

Programa de curso

:Instituto de Ciencias Biomédicas

Unidad Académica Programa de Microbiología y Micología

Instituto de Ciencias Biomédicas

Programa de Microbiología y Micología

Nombre del curso :Mecanismos de patogenicidad y resistencia bacteriana

Nombre en inglés del curso

:Mechanisms of pathogenicity and resistance in bacteria

Idioma en que se dicta :Español

Código ucampus :SBMPYRB

Versión :v. 3

Modalidad :A distancia

Semestre :1 Año :2022

Días/Horario :Vier 11:00-13:00,

 Fecha inicio
 :01/04/2022

 Fecha de término
 :22/07/2022

Lugar :
Cupos mínimos :2
Cupos máximo :15
Créditos :4

Tipo de curso

SEMINARIO BIBLIOGRÁFICO

Datos de contacto

Nombre : Carlos G. Osorio Abarzúa

Teléfono : 995327130

Email : carlososorio@uchile.cl

Anexo : 86902

Horas cronológicas

Presenciales: : 0 A distancia: : 34

Tipos de actividades(Horas directas estudiante)

Clases(horas) : 0
Seminarios (horas): : 26
Evaluaciones (horas) : 4
taller/trabajo práctico : 0
Trabajo/proyecto : 4
investigación: : 4

PROFESOR ENCARGADO/A DEL CURSO (PEC)

Osorio Abarzua Carlos Gonzalo

			Hausa	Hawaa	11
Docente Participantes	Unidad Academica	Función	Horas directas.	Horas indirectas.	Horas totales
Ulloa Flores Maria Teresa	Programa de Microbiología y Micología	Profesor Coordinador	8	24	32
Hermosilla Diaz German Humberto	Programa de Microbiología y Micología	Profesor Participante	6	18	24
Del Canto Fuentes Felipe Antonio	Programa de Microbiología y Micología	Profesor Participante	4	12	16
Garcia Angulo Victor Antonio	Programa de Microbiología y Micología	Profesor Participante	4	12	16

Fundamentos, Antecedentes que justifican la necesidad de dictar el curso

Entregar una visión actualizada de los principales mecanismos de patogenicidad y resistencia bacteriana; además se tratarán temas relacionados (evolución, bacteriófagos y patogenicidad, transferencia genética horizontal, genómica, etc.). Preparar al alumno en el análisis, presentación y discusión de artículos científicos sobre bacteriología molecular.

Destinatarios

Especialmente dirigido a alumnos de postgrado del área de la Microbiología e Infectología

Requisitos

Generales: Fotocopia del RUT y fotocopia legalizada del título profesional. Específicos: Curso de Biología Molecular y Microbiología Básica

Resultado de aprendizaje

Relacionar conceptos básicos de patogenicidad bacteriana y sus diferentes mecanismos: toxicidad, invasividad e hipersensibilidad y los principales mecanismos resistencia bacteriana.

Metodologias de enseñanza y aprendizaje	Cantidad
Seminario	26

Metodologias de evaluacion	Cantidad	Duración horas	Ponderación
Control	15	4	80.0 %
Informe, trabajo o proyecto de investigación	1	4	20.0 %
		Suma (Para nota presentación examen)	100.0 %
		Total %	%

Requisitos de aprobación y asistencia.

Se requiere que el promedio de las pruebas de seminario y el trabajo de investigación, sea igual o superior a 4,0. Toda inasistencia debe ser justificada. Si se acoge la justificación, la actividad podrá ser recuperada a través de la prueba pertinente. Las inasistencias no justificadas debidamente serán evaluadas con nota 1,0. Para aprobar el curso no se puede tener más de dos inasistencias a seminarios sin justificación.

Unidades

Unidad: Patogenicidad

Encargado: Osorio Abarzua Carlos Gonzalo

Logros parciales de aprendizajes:

Reconoce y describe los principales mecanismos de patogenicidad y los factores de virulencia involucrados.

Explica la interacción agente-hospedero basándose en mecanismos moleculares y genéticos.

Acciones Asociadas:

Discute y analiza en profundidad 2 artículos preseleccionados por cada sesión (11 sesiones) Contenidos:

1. Mecanismos de toxicidad; introducción modelo toxicidad; modelo SpeM y SpeL Streptococcus pyogenes 2. Mecanismos de toxicidad; modelo ctxA Vibrio cholerae 3. Mecanismos de toxicidad; modelo toxina botulínica Clostridium botulinum 4. Mecanismos de toxicidad; modelo Tir EPEC 5. Mecanismos de invasividad; introducción modelo invasividad; modelo Legionella 6. Mecanismo de invasividad; modelo UPEC 7. Mecanismo de invasividad; Streptococcus grupo B 8. Mecanismos invasividad; modelo Salmonella 9. Mecanismo hipersensibilidad; introducción modelo hipersensibilidad; modelo proteína M Streptococcus 10. Mecanismo hipersensibilidad; modelo Propionibacterium 11. Mecanismo de hipersensibilidad; modelo glomerulonefritis

Unidad: Resistencia

Encargado: Ulloa Flores Maria Teresa

Logros parciales de aprendizajes:

Reconoce y describe los principales mecanismos de resistencia bacteriana.

Explica las bases moleculares y genéticas de los mecanismos de resistencia bacteriana Acciones Asociadas:

Discute y analiza en profundidad 2 artículos preseleccionados por cada sesión (4 sesiones) Contenidos:

1. Mecanismos de resistencia; introducción mecanismos de resistencia; modelo KPC 2. Mecanismos de resistencia; VanA Enterococcus 3. Mecanismos de resistencia; Pseudomonas y ciprofloxacino 4. Mecanismos de resistencia; evolución clon ST8 Staphylococcus aureus

Bibliografía							
Caracter	Titulo	Autor	Edición	Idioma	Formato	Vínculo(Url)	Fecha de consulta
Complementario	Brock biology of microorganisms	Madigan MT, Martinko JM, Parker J.	14º edition	Español	Libro impreso		00/00/0000
Complementario	Microbiology: An evolving science.	Slonczewski and Foster.	2002	Inglés	Libro impreso		00/00/0000
Complementario	Cellular Microbiology	Cossart, Boquet, Normark y Rappuoli	ASM Press, 2000	Inglés	Libro impreso		00/00/0000
Complementario	Bacterial pathogenesis: a molecular approach	Salyers AA & Whitt DD	ASM Press, 2002	Inglés	Libro impreso		00/00/0000

Plan de clases						
Fecha	Horario	Actividad	Condición	Tema	Profesor(es)	
2022-04- 01,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de toxicidad; introducción modelo toxicidad; modelo SpeM y SpeL Streptococcus pyogenes	Osorio Abarzua Carlos Gonzalo	
2022-04- 08,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de toxicidad; modelo ctxA Vibrio cholerae	Osorio Abarzua Carlos Gonzalo	
2022-04- 22,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de toxicidad; modelo toxina botulínica Clostridium botulinum	Osorio Abarzua Carlos Gonzalo	
2022-04- 29,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de toxicidad; modelo Tir EPEC	Hermosilla Diaz German Humberto	
2022-05- 06,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de invasividad; introducción modelo invasividad; modelo Legionella	Ulloa Flores Maria Teresa	
2022-05- 13,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismo de invasividad; modelo UPEC	Ulloa Flores Maria Teresa	
2022-05- 20,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismo de invasividad; Streptococcus grupo B	Del Canto Fuentes Felipe Antonio	
2022-05- 27,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos invasividad; modelo Salmonella	Del Canto Fuentes Felipe Antonio	
2022-06- 03,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismo hipersensibilidad; introducción modelo hipersensibilidad; modelo proteína M Streptococcus	Garcia Angulo Victor Antonio	

2022-06- 10,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismo hipersensibilidad; modelo Propionibacterium	Garcia Angulo Victor Antonio
2022-06- 17,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismo de hipersensibilidad; modelo glomerulonefritis	Hermosilla Diaz German Humberto
2022-06- 24,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de resistencia; introducción mecanismos de resistencia; modelo KPC	Ulloa Flores Maria Teresa
2022-07- 01,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de resistencia; VanA Enterococcus	Ulloa Flores Maria Teresa
2022-07- 08,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de resistencia; Pseudomonas y ciprofloxacino	Hermosilla Diaz German Humberto
2022-07- 15,Vier	11 - 13	Preparación y entrega de informe de investigación	Obligatoria	Preparación y entrega de informe de investigación	Osorio Abarzua Carlos Gonzalo
2022-07- 22,Vier	11 - 13	Seminario sincrónico	Obligatoria	Mecanismos de resistencia; evolución clon ST8 Staphylococcus aureus	Osorio Abarzua Carlos Gonzalo