

PROGRAMA

Carrera: Ingeniería Forestal

Curso: Bioquímica

Tópico: Química Orgánica-Bioquímica

Semestre: Primavera 2025 Horario: 5 horas semanales

Profesor: Alejandro Riquelme Escobar

Objetivos del curso

- Conocer las características de las estructuras de moléculas orgánicas, sus tipos de enlace y geometría molecular y comprender las reacciones que ellas realizan.
- Comprender la relación entre la química de las biomoléculas y la estructura y funcionamiento celular.
- Desarrollar la capacidad de analizar e integrar diferentes rutas metabólicas y sus mecanismos de regulación.
- > Conocer las funciones orgánicas, sus interrelaciones y capacidad de organizarse para dar origen a las diversas estructuras biológicas.

TEMAS

1. Grupos Funcionales y Reacciones Orgánicas

Grupos Funcionales y prioridades. Nomenclatura. Combustión de hidrocarburos; Hidrólisis. Adición, óxido-reducción de alquenos y alquinos; Óxido-reducción en las moléculas orgánicas; Óxido-reducción de funciones orgánicas; Reacciones orgánicas en la naturaleza

Biomoléculas

2. Hidratos de carbono.

Características químicas y funciones biológicas. Principales grupos. Monosacáridos: ciclación, carbono anomérico, poder reductor y ésteres fosfóricos. Disacáridos: enlace glucosídico. Polisacáridos de reserva. Polisacáridos estructurales, pared celular vegetal y bacteriana.

3. Lípidos: aceites, grasas y esteroles

Rol e importancia de las grasas y aceites. Fuente de energía química; Reconocimiento estructural y físico de las grasas, aceites y ceras; Isomería geométrica de los ácidos grasos; Reacciones de aceites y grasas (óxido-reducción, saponificación); Reconocimiento estructural y físico de los esteroides; Importancia de los esteroides.

4. Aminoácidos, péptidos, proteínas

Características químicas y principales grupos. Tipos de radicales aminoacídicos según la polaridad. Ionización en soluciones acuosas. Comportamiento ácido - base y curva de titulación. Principales grupos según sus funciones biológicas. Enlace peptídico. Estructura primaria. Conformación tridimensional y fuerzas estabilizadoras características de las estructuras secundaria y terciaria. Proteínas oligoméricas. Desnaturalización.

5. Enzimas.

Características. Generalidades sobre clasificación. La molécula enzimática: sitio activo, especificidad relativa y absoluta, sitio alostérico. Cofactores. Cinética enzimática: ecuación de Michaelils-Menten. Concepto de KM y Vm. Representación de Lineweaver-Burk. Inhibición: competitiva y no competitiva. Regulación de la actividad enzimática: alosterismo y modificación covalente. Zimógenos. Isoenzimas. Control de la síntesis y degradación de enzimas.

6. Ácidos Nucleicos

Nucleótidos. Importancia biológica. Estructura de los nucleótidos y nucleósidos. Mononucleótidos, di y trifosfato. Dinucleótidos: generalidades sobre la molécula de NAD y FAD. Polinucleótidos: características comunes y distintivas entre ADN y ARN. Características de la molécula de ADN. Modelo de Watson y Crick. Estructura secundaria.

7. Fotosíntesis.

Ultraestructura del cloroplasto. La membrana como soporte de la fase luminosa de la fotosíntesis. Excitación de pigmentos, antena y centros de reacción. Fotólisis del agua. Fotosistemas. Gradiente protónico: fotofosforilación acíclica y cícilca. Los herbicidas como inhibidores o desacopladores del transporte electrónico.

8. Bioquímica de la reducción del carbono.

Fijación de CO2 por plantas C3 (Calvin - Benson), RubisCO, formación de glucosa, regeneración del aceptor. Fotorrespiración. Fijación de CO2 y por plantas C4 (Hatch - Slack), PEP carboxilasa, ventajas de la estrategia. Fijación de CO2 por plantas CAM: características del proceso.

9. Glucólisis y glucogénesis.

Perspectiva general. Principales reacciones relacionadas con la formación del piruvato. Fosforilación a nivel de sustrato como otra forma de obtención de ATP. Reoxidación del

NADH.H glicolítico: lanzaderas, fermentación láctica y alcohólica. Balance de la glicólisis. Ciclo de Cori. Glucogénesis: significado, formación de PEP a partir del Piruvato. Regulación de la Glicólisis y Glucogénesis.

10. Ciclo de Krebs.

Panorama general del ciclo. La acetil CoA como un abastecedor clave. Principales reacciones. Las deshidrogenasas del ciclo y su relación con cadena respiratoria. Balance del ciclo. Reacciones anapleróticas. Regulación en múltiples pasos.

11. Cadena respiratoria y fosforilación oxidativa.

Mitocondria: ultraestructura, localización de trasportadores de electrones. Reacciones de oxidoreducción y medida del potencial redox. Fosforilación oxidativa: relación P/O. Inhibidores y desacopladores. Transferencia de electrones a través de la cadena respiratoria: teoría Quimio-osmótica (o de Mitchell).

CALENDARIO SEGUNDO SEMESTRE

SEMANA	MATERIA	ACTIVIDADES DE APRENDIZAJE	Fecha
1	Tema 1. Introducción química orgánica. Grupos funcionales. Nomenclatura.	Clases, sesiones de ejercicios y trabajos en grupo	11 de agosto
2	Tema 2. Reacciones orgánicas I	Clases, sesiones de ejercicios	18 de agosto
3	Tema 2. Reacciones orgánicas II.	Clases, sesiones de ejercicios y Control 1	25 de agosto
4	Tema 3. Hidratos de Carbono.	Clases, sesiones de ejercicios y tareas en grupo	1 de septiembre 8 de septiembre
5	Tema 4. Lípidos: aceites, grasas y esteroles	Clases, sesiones de ejercicios	8 de septiembre
6	Semana de receso de Fiestas Patrias		
7	Tema 5. Aminoácidos, péptidos, proteínas	Clases, sesiones de ejercicios y tarea grupal y Control 2	22 de septiembre
8	Tema 6: Proteínas y Enzimas.	Clases, sesiones de ejercicios	29 de septiembre
9	Prueba 1	Temas 1-6	6 de octubre
9	Tema 7: Ácidos Nucleicos	Sesiones de Ejercicios y Tarea grupal	6 de octubre

10	Tema 8 : Fotosíntesis: Fase fotoquímica y fase bioquímica.	Clases, sesiones de ejercicios y Tarea grupal	13 de octubre
11	Tema 9: Bioquímica de la reducción del carbono y factores.	Clases, sesiones de ejercicios y Control 3	20 de octubre
12	Tema 10. Glucólisis y glucogénesis.	Clases, sesiones de ejercicios y trabajo grupal	27 de octubre
13	Tema 11. Ciclo de Krebs.	Clases, sesiones de ejercicios y trabajo grupal	3 de noviembre
14	Semana de trabajo autónomo		
15	Tema 12. Cadena respiratoria y fosforilación oxidativa.	Sesiones de Ejercicios y Control 4	17 de noviembre
16	Prueba 2	Temas 7-12	24 de noviembre
17	Recuperación de Pruebas y Controles		1 de diciembre
18	Examen 1		9 de diciembre
19	Examen- segunda opción		15 de diciembre

Bibliografia

Raymond Chang. Química; Editorial McGraw-Hill, Séptima Edición. 2002.

Lehninger A.L. (2005) Principios de Bioquímica, 4ª Edición. Omega Ed., Barcelona. 1176 pp

Mathews, C. K. E., Van Holde, K, Ahern G. (2002) Bioquímica, 3° Edición. Pearson Educación, 1335 pp