

Nombre de la Actividad Académica	Didáctica de la Física y Práctica Profesional I	
Nombre de la Actividad Académica en		
inglés		
Código y Semestre	F0280946 – IX semestre	
Equipo docente / Coordinador	Ana Moncada	
	María José Carreño	
	Rodney Díaz	
	Alberto Maringer	
Unidad Académica/ Organismo que lo	Facultad de Filosofía y Humanidades	
desarrolla		
Ámbito	Pedagógico	
	Ejercicio Docente	
Tipo de Créditos	Presencial	No presencial
	98 (48 y 50) horas	64 horas
Número de créditos SCT – Chile	6 SCT	
Requisitos	Didáctica de la Física y práctica pedagógica	
Propósito Canaval dal aurea		

Propósito General del curso

Este curso busca profundizar en las competencias desarrolladas en el curso de didáctica de la física y práctica pedagógica.

Se trabajará enfoques indagatorios de la enseñanza-aprendizaje de la física y de conocimiento pedagógico del contenido de los profesores en formación, haciendo énfasis en el razonamiento pedagógico y reflexión de la propia práctica de los futuros profesionales.

También busca contribuir a la toma de decisiones pedagógicas y didácticas de manera informada y argumentada en base a la literatura e investigación en didáctica de las ciencias, a través de la implementación de unidades didácticas contextualizadas al centro de práctica y coherentes con la enseñanza de la física

Competencias del perfil de egreso a las que contribuye el curso

- P1. Indaga sistemática, critica y reflexivamente sobre su propia práctica pedagógica, contrastándola con sus pares y con las necesidades del contexto para el desempeño profesional.
- P2. Genera procesos reflexivos con los/las alumnos/as para su desarrollo integral a nivel individual e inclusión en su comunidad, desde una mirada ética y con responsabilidad social.
- D.4. Integra la matemática, la física y sus didácticas específicas, con el fin de crear oportunidades de aprendizajes para sus alumnos/as, entendiendo que la matemática y la física se enriquecen mutuamente.

Competencias sello

Capacidad crítica y autocrítica

Capacidad de comunicación oral y escrita

Capacidad de comunicación oral y escrita en una segunda lengua

Capacidad de investigación

Compromiso con la preservación del medioambiente

Compromiso ético

Responsabilidad social y compromiso ciudadano Valoración y respeto por la diversidad y la multiculturalidad

Sub-competencias

- P1.1 Describe la práctica docente para analizar el quehacer profesional de acuerdo al contexto sociocultural.
- P1.2 Reflexiona críticamente sobre la actividad docente como fuente de conocimiento pedagógico para generar saber docente.
- P1.4 Investiga su práctica de forma colaborativa, a fin de elaborar y fundamentar una mirada crítica sobre su acción profesional considerando los contextos socioculturales de la escuela, de la profesión docente y la política pública.
- P1.7 Implementa estrategias de enseñanza activo participativas, flexibles y pertinentes para el aprendizaje de todos y todas los/las estudiantes, que le permita tomar decisiones adecuadas en el contexto formativo.
- P1.8 Evalúa resultados de aprendizaje a partir de instrumentos y procesos coherentes con la estrategia de enseñanza y de aprendizaje implementada para evidenciar el desarrollo de habilidades y retroalimentar el proceso formativo del alumno/a.
- P2.1 Reconoce la diversidad de sus alumnos/as para la resignificación y reformulación de su propuesta pedagógica a través del uso de estrategias pertinentes.
- D4.3 Relaciona la matemática y la física con sus respectivas didácticas específicas para crear oportunidades de aprendizaje, teniendo en cuenta el contexto escolar.
- D4.4 Aprovecha las similitudes entre la didáctica de la matemática y de la física para crear oportunidades de aprendizaje favoreciendo la concepción de la integración y complementación de ambas disciplinas.
- D4.5 Procesa, desde una perspectiva didáctica, información científica de diversas fuentes e idiomas como castellano e inglés, para la actualización permanente de su quehacer profesional.

Resultados de Aprendizaje

- 1. Analiza crítica y reflexivamente el contexto de aula y las prácticas de enseñanza, desde los fundamentos de la didáctica de las ciencias experimentales.
- 2. Diseña, implementa y evalúa unidades didácticas de física a partir del análisis del contexto de aula, de los principios de la didáctica de las ciencias experimentales y los documentos curriculares vigentes.
- Analiza sistemáticamente evidencias de aprendizaje en la unidad didáctica implementada monitoreando y retroalimentando el cumplimiento de los objetivos de aprendizaje curriculares.
- 4. Reflexiona en torno a sus prácticas y propone mejoras que fortalecen su quehacer docente, considerando aspectos como ciudadanía y democracia, ética, trabajo colaborativo y en comunidad.

5. Reflexionan críticamente sobre su propio conocimiento disciplinar en el/los eje(s) temático(s) implementados y desarrolla estrategias para mejorar su compresión del tema para mejorar su práctica docente.

Saberes/ Contenidos

Tema 1: Articulación de aprendizajes previos a la práctica

- a) Conocimiento pedagógico del contenido: modelo de Magnusson y colegas
- b) Lenguaje científico:
 - i) transición lenguaje natural/coloquial al lenguaje científico.
 - ii) Prácticas científicas, mirada general en todas las ciencias: observación/ evidencia; explicación científica; argumentación basado en evidencia;
 - iii) Prácticas científicas en física: observación/ evidencia; explicación científica; argumentación
- c) Estrategias didácticas: Indagación científica; Cambio conceptual (o evolución); Ciencia Tecnología y Sociedad
- d) Revisión del currículo de Física y Cs Naturales
- e) Metodologías de las Ciencias Sociales para la investigación de los aprendizajes en física: Entrevistas, encuestas, observación (como instrumento) y análisis de estos instrumentos.

Tema 2: Análisis del contexto de aula y diseño de enseñanza

- a) Caracterización del contexto de aula y análisis de evidencias de aprendizaje
- b) Diseño de la enseñanza en función de la evidencia analizada y el contexto
- c) Implementación de la unidad didáctica

Tema 3: Análisis de resultados de implementación y reflexión pedagógica

- a) Análisis de evidencias de implementación y resultados de aprendizaje situado
- b) Reflexión docente a partir de la experiencia en práctica bajo el modelo de Magnusson

Metodología

Estrategias participativas, de trabajo colaborativo. Se utilizará en algunos casos la estrategia de aula invertida, estudio de casos, la resolución de problemas, revisión bibliográfica, debates didácticos; diseño, implementación de actividades y evaluación de la unidad didáctica. Se trabajará en forma colectiva el análisis, la discusión, el juicio entre pares y la retroalimentación durante todo el proceso. Además, se realizarán tutorías de seguimiento personalizado.

Evaluación

La evaluación se articula en 3 componentes:

a) Elaboración del portafolio:

- **Producto 1 (20%)**: Diseño y presentación oral de una unidad didáctica: Evaluación en parejas donde deberán diseñar una unidad didáctica para 5 clases para un Objetivo de Aprendizaje específico entregado por los docentes de la sección.
- **Producto 2 (20%):** Informe escrito sobre el diseño de la unidad de aprendizaje implementada y justificación de la misma y de los cambios realizados. Esta evaluación es individual y se presenta el diseño de la unidad didáctica que implementó en el centro de práctica fundamentando sus decisiones en la literatura de didáctica de las ciencias experimentales y la evidencia recolectada de su contexto específico
- **Producto 3 (20%):** Presentación oral poster sobre el aprendizaje logrado en el curso que se intervino y una reflexión pedagógica sobre el aprendizaje logrado.

b) Actividades incrementales: 10%

Actividades que se realizan en clase y deben ser enviadas durante las mismas. Habrá foco en el cuaderno pedagógico de Física.

c) Desempeño en el centro de práctica 30%

- Observación de clases (20%)
- Nota sugerida del profesor guía de física en el centro de práctica (10%)

Requisitos de Aprobación

Para aprobar el curso deberá cumplir cada uno de los siguientes puntos:

- a) Cada nota parcial, así como el promedio final debe ser igual o superior a 4,0. Si se obtiene una calificación inferior a 4,0 en alguna nota parcial, indica que se reprueba el curso inmediatamente.
- b) Asistencia al centro de práctica 100%
- c) Asistencia a las clases 80%. Se tomará asistencia durante los 15 primeros minutos de cada bloque a través de código QR de u-cursos, después de ese tiempo será considerado/a ausente.
- d) Asistencia a las tutorías individuales 100%
- e) En caso de no cumplirse los requisitos para aprobación la nota final del curso será un 3,0

ESTE CURSO NO TIENE EXAMEN

Palabras Claves

- Formación docente inicial (FID)
- Enseñanza de las ciencias
- Prácticas científicas
- Conocimiento Pedagógico del contenido
- Enseñanza de la física

Bibliografía Obligatoria

- 1. Sanmartí. (2007). Evaluar para aprender (1a. ed.). Graó.
- 2. Driver, Guesne, E., & Tiberghien, A. (1989). Ideas científicas en la infancia y la adolescencia (4a. ed.). Ministerio de Educación y Cultura.
- 3. Couso, D., Jimenez-Liso, M.R., Refojo, C. & Sacristán, J.A. (Coords) (2020) Enseñando Ciencia con Ciencia. FECYT y Fundacion Lilly. Madrid: Penguin Random House.
- 4. Couso, D., Cadillo, E., Perafán, G. y Adúriz-Bravo, A. 2011) (2da Ed) Unidades y didácticas en ciencias y matemáticas. Cooperativa editorial MAGISTERIO.
- 5. Magnusson, S. J., Borko, H. y Krajcik, J. S. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. Lederman (Eds.), Examining Pedagogical content Knowledge (pp. 95-132). Boston, MA: Kluwer Press.

Bibliografía Complementaria

- 1. Furman, M, de Podestá, M (2011) La aventura de enseñar ciencias naturales. Aique. Argentina
- 2. García, S., y Furman, M. (2014) Categorización de preguntas formuladas antes y después de la enseñanza por indagación. Praxis & Saber, 5(10), 75-91. 2.
- 3. Sanmartí, N., y Márquez, C. (2012). Enseñar a plantear preguntas investigables. Alambique Didáctica de las ciencias experimentales, 70, 27-36.
- 4. Gilbert, J. (2004). Models and modelling: routes to more authentic Science education. International Journal of Science and Mathematics Education 2: 115–130.
- 5. Ruiz, J. R., Paños, E., García R. A., & Llapa, M. P. (2019). La microenseñanza como forma de evaluación formativa en Magisterio. Revista Infancia, Educación y Aprendizaje, 5(2), 542-547. 7.
- 6. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196.
- 7. León, A. N., & Santiago, P. R. (2013). Microenseñanza una técnica para motivar el enseñar y aprender investigando. Perspectivas docentes, (52).
- 8. Díaz-Delgado, R., y Carreño-Matus, M. (2023) Estrategia CMID adaptada a la virtualidad para estudiar el equilibrio térmico en formación inicial docente. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 20(3), 3201. doi: 10.25267/Rev Eureka ensen divulg cienc.2023.v20.i3.3201
- 9. Gilbert, John K., (2004) Models and modelling: routes to more authentic Science education. International Journal of Science and Mathematics Education 2: 115–130
- Jorba, J. y Sanmartí, N., (1996). Enseñar a aprender y evaluar: un proceso de regulación continua. Propuestas didácticas para las áreas de Ciencias de la Naturaleza y Matemáticas. Madrid: MEC.
- 11. Sardà, A., y Sanmartí, N. (2000). Enseñar a argumentar científicamente: un reto de las clases de ciencias. Enseñanza de las Ciencias, 18(3), 405-422.

Recursos Web

- Simuladores:
 - https://phet.colorado.edu/
- Libros: https://www.fecyt.es/es/publicacion/ensenando-ciencia-con-ciencia
- Páginas web relevantes

https://www.ecbichile.cl/home/

https://icec.mineduc.cl/

https://www.curriculumnacional.cl/portal/

https://scholar.google.com/ https://uchile.cl/bibliotecas