

PROGRAMA DE CURSO

Biotecnología Experimental

A. Antecedentes generales del curso:

Departamento	Ingeniería Química, Biotecnología y Materiales					
Nombre del curso	Biotecnología		Código	BT6481	Créditos	3
	Experimental					
Nombre del curso en inglés	Experimental Biotechnology					
Horas semanales	Laboratorio	3	Auxiliares		Trabajo personal	2
Carácter del curso	Formación Integral de especialización			X		
Requisitos	BT5801					

B. Propósito del curso:

El propósito del curso es que los y las estudiantes desarrollen experiencias de laboratorio que incluyen métodos experimentales para la producción, extracción, detección y análisis de proteínas y ácidos nucleicos, y conozcan su aplicación en proyectos de biotecnología.

El curso tributa a las siguientes competencias específicas (CE) y competencias genéricas (CG):

CE1: Implementar y operar soluciones científico-tecnológicas a problemas relacionados con el ámbito de la industria biotecnológica y áreas afines, a nivel de modelo, prototipo o escala piloto, utilizando criterios técnicos e innovación.

CG1 Comunicación profesional y académica

Comunicar en español de forma estratégica, clara y eficaz, tanto en modalidad oral como escrita, puntos de vista, propuestas de proyectos y resultados de investigación fundamentados, en situaciones de comunicación compleja, en ambientes sociales, académicos y profesionales diversos.

C. Resultados de aprendizaje:

Competencias específicas	Resultados de aprendizaje	
CE1	RA1: Implementa los fundamentos moleculares de las principales técnicas utilizadas en el análisis y manipulación de los sistemas biológicos, logrando describir sus aplicaciones, a fin de plantear limitaciones y soluciones que permitan mejorar, tanto los métodos mismos como sus aplicaciones.	
	RA2: Desarrolla experimentos utilizando metodologías de uso frecuente en generación, extracción, purificación y análisis de productos biotecnológicos, logrando identificar las aplicaciones, limitaciones y fortalezas de los métodos.	
CG1	RA3: Expone en forma oral de manera clara y eficaz, sus resultados de laboratorio, logrando transmitir y discutir con sus pares los conceptos de la disciplina.	

D. Unidades temáticas:

Semana	Experiencia	Indicador de logro	Duración en sesiones
1	Introducción al curso	El/la estudiante: Identifica la propuesta del curso.	1 sesión
2	Instrucción sobre medidas de seguridad	El/la estudiante Identifica las medidas de seguridad.	1 sesión
3	E1. Cinética enzimática	El/la estudiante: • Mide la actividad enzimática en el tiempo, evaluando el efecto de la temperatura y del pH en la actividad enzimática.	1 sesión
4	E2. Fermentación de una bacteria produciendo una	 El/ la estudiante: Desarrolla un experimento de fermentación de una bacteria que produce una enzima recombinante. Prepara los medios de cultivo, instala 	2 cosiones
proteína recombinante	el fermentado y toma muestras para medir crecimiento bacteriano mediante densidad óptica y actividad enzimática para evaluar la producción de la enzima	2 sesiones	
6	E3. Purificación cromatográfica de una proteína	Desarrolla una actividad de separación de una proteína mediante cromatografía de intercambio iónico y estudian la presencia de la enzima en las fracciones mediante ensayos de actividad enzimática y electroforesis en condiciones desnaturantes.	1 sesión
7	E4. Renaturación de Proteínas	Recibe la muestra con una proteína fluorescente en condiciones nativas, la desnaturan y aplica un procedimiento para renaturarla. Reporta la eficiencia de renaturación del procedimiento aplicado.	1 sesión
8	Presentación y discusión por parte de los estudiantes, de los	El/la estudiante: Presenta y discute los resultados obtenidos en los laboratorios E1 –	1 sesión

	principales resultados obtenidos en las experiencias E1, E2, E3 y E4		
9	E5 Identificación de organismos mediante RFLP. Parte I PCR	El/la estudiante: • Recibe una muestra de ADN y lo amplifican mediante reacción de polimerización de ADN en cadena (PCR).	1 sesión
10	E5 Identificación de organismos mediante RFLP. Parte II electroforesis y corte con enzimas de restricción	El/la estudiante: • Analiza el producto del PCR del lab anterior mediante electroforesis y cortan el ADN con enzimas de restricción	1 sesión
11	E6 Clonamiento de genes. Parte I Extracción de RNA y RTPCR	El/la estudiante: • Recibe una muestra de células, extraen RNA total y realizan RT-PCR	1 sesión
12	E6 Clonamiento de genes. Parte II Ligación y transformación bacteriana	El/la estudiante: • Utiliza el producto de PCR del laboratorio anterior, para ligar al vector pGEMTeasy y el producto recombinante se transforma en bacterias competentes	1 sesión
13	E6 Clonamiento de genes. Parte III Análisis de recombinantes	El/la estudiante: • Utiliza las colonias producto de la transformación en el laboratorio anterior para analizarlas mediante PCR de colonias y electroforesis en gel de agarosa.	1 sesión
14	Presentación y discusión por parte de los estudiantes, de los principales resultados obtenidos en los laboratorios E5 y E6	El/la estudiante: • Presenta y discute los resultados obtenidos en los laboratorios E5 y E6	1 sesión
15	Semana de retroalimentación		

Estrategias de enseñanza - aprendizaje:

La principal estrategia a ser utilizada es la de "laboratorio".

El estudiante deberá realizar una lectura previa relacionada con la sesión de laboratorio, la lectura permitirá, realizar cada uno de los pasos con seguridad y autonomía.

F. Estrategias de evaluación:

El curso considera las siguientes instancias de evaluación:

- 1. Un control individual breve, a la entrada de cada laboratorio, para demostrar el conocimiento sobre la sesión. Para preparar el control el estudiante debe leer la guía con anticipación.
- 2. Reporte breve de los resultados de cada laboratorio, presentados en forma colaborativa con sus pares de acuerdo con un formato preestablecido, entregable al final de cada sesión de laboratorio.
- 3. Presentación oral. Cada estudiante y su compañero/a de trabajo realizarán una presentación oral breve (5-7 min) relacionada con una de las actividades experimentales del semestre. La presentación deberá estar enfocada en una reflexión sobre los fenómenos observados en cuanto a su relación con contenidos teóricos, y a los usos de la metodología en biotecnología. Se entregará el detalle de esta información al inicio del curso.

G. Datos generales sobre elaboración y vigencia del programa de curso:

Vigencia desde:	Primavera, 2021	
Elaborado por:	Oriana Salazar	
Validado por:	J. Cristian Salgado	
Revisado por:	Área de Gestión Curricular	