CURSO DEL DOCTORADO

2006/01 en adelante

MA 606 TEORIA DE GRAFOS

(15 U.D.)

DISTRIBUCION HORARIA:

4.0 hrs. clases

11 hrs. trabajo personal

REQUISITOS: A.D.

OBJETIVOS:

El curso es una introducción a la teoría de grafos, la que se hará analizando en detalle algunos resultados centrales de ella.

PROGRAMA:

1. CONCEPTOS BASICOS.

Grafos, grado de un vértice, caminos, ciclos, conectividad, otra terminología básica.

2. EMPAREJAMIENTOS.

Emparejamientos en grafos bipartitos, emparejamiento en grafos generales, recubrimiento por caminos.

3. CONECTIVIDAD.

Grafos 2-conexos y 3-conexos, Teorema de Menger y Teorena de Mader. Arboles recubridores y caminos entre vértices.

4. GRAFOS PLANARES.

Grafos planos, Teorema de Kuratowski, criterio algebraico de planaridad.

5. FLUJOS.

Circulaciones y flujos en redes, k-flujos para k pequeño, conjeturas de Tutte.

6. SUBESTRUCTURAS EN GRAFOS DENSOS.

Sub grafos, lema de regularidad de Szemerédi, aplicaciones del lema de regularidad.

7. SUBESTRUCTURAS EN GRAFOS DISPERSOS.

Menores topológicos, menores, conjetura de Hadwiger.

8. TEORIA DE RAMSEY PARA GRAFOS.

Teoremas originales de Ramsey, Teoremas inducidos de Ramsey, propiedades Ramsey y conectividad.

9. CICLOS HAMILTONIANOS.

Condiciones suficientes, ciclos hamiltonianos y secuencias de grados, ciclos hamiltonianos en el cuadrado del grafo.

10 MENORES, ARBOLES Y CBO.

Casi buen orden, Teorema de los menores para árboles, descomposición de árboles, ancho de árbol y menores prohibidos, Teorema de los menores (idea).

11 OTROS TOPICOS.

Coloramiento de grafos, grafos aleatorior.

BIBLIOGRAFIA:

- Reinhard Diestel, Graph Theory, 2000, Springer-Verlag
- Frank Harary, Graph Theory, 1995, Perseus Pr.
- Bela Bollobas, Modern Graph Theory, 1998, Springer-Verlag