FI6010: Introducción a la Física Espacial

Creditos: 6

Historia Observatorios Radiación cósmica y Geomagnetismo en Chile: 1948-2020.

Objetivos Generales del curso: Conocer los parámetros fundamentales que ligan partículas, campos magnéticos, viento solar, física de plasmas, plasma espacial, eventos solares y galácticos en ambientes terrestres y espaciales. Configuración de los campos magnéticos de Tierra (Dinamo). Placas tectónicas. Corte de rigidez geomagnética. Magnetosfera Terrestre.

Temario:

I. Breve reseña histórica y cronológica de la Física Sol-Tierra. Introducción a conceptos de:

- a) Física de la atmósfera solar. Viento Solar y Heliosfera. Medio interplanetario.
- b) Radiación Cósmica Galáctica y Solar.
- c) Propagación de Radiación Cósmica en el medio Interplanetario, a través del campo magnético de la tierra y en la atmósfera. Magnetosfera.
- d) Fenomenología de la Radiación Cósmica: Componente Primaria y secundaria, su naturaleza y métodos relativos de detección.
- e) Métodos de Física Experimental: Cámaras de Ionización. Contadores Proporcionales, Contadores de destelleo (Scintillations Counters). Sistemas. Principios de funcionamiento e Ingeniería de Diseño como Arquitectura de: Telescopios de Muones. Monitores de Neutrones de BF3. de última generación He3. Magnetómetros. Sistemas de Alta y Baja tensión. Sistema de adquisición de señales. Periféricos medio- ambientales. Sistemas de adquisición de datos. Observatorios permanentes.

II. Física de Plasma Espacial:

- a) Movimiento de partículas.
- b) Colección de partículas.
- c) Definición del estado del Plasma.
- d) Descripción de fluidos de un Plasma.
- e) Aplicación de ecuaciones Magnetohidrodinámicas.

III. El Sol y su magnetohidrodinámica:

- a) El rol de los campos magnéticos.
- b) Equilibrio Magnetohidrodinámica, Ondas e Inestabilidades.
- c) Actividad Solar

IV. Viento Solar:

- V. Ondas de Choque sin colisiones. Temas de acuerdo interés del estudiante. Optativos:
- a) Introducción al tema.
- **b**) Estructura de la onda. Interacción entre el Viento Solar y Planetas Magnetizados. Campos Magnéticos Planetarios, Forma y Tamaño de la cavidad magnetosférica, Modelos Autoconsistentes.
- VI. Ionósfera Magnetopausa, Magnetocola y reconexión magnética.
- VII. Configuración de los campos magnéticos de Tierra, Cortes de rigidez geomagnéticas. Placas tectónicas. Rocas y su relación con campos E y B, Magnetosfera de la Tierra. Plasma Espacial.
- VIII. Los conocimientos para el dominio de los temas de I a VII son dados en el curso, son necesarios para el estudio, análisis y conclusiones en las publicaciones referenciadas a continuación. Se espera para este periodo poder agregar algunos acápites más si las publicaciones en desarrollo son aceptadas por la comunidad científica Internacional.

Publicaciones especializadas utilizadas en Curso de Post Grado de Física Espacial y Geomagnetismo

New He 3 neutron monitors for Chilean Cosmic-Ray Observatories from the Altiplane zone to the Antarctic zone. E.G. Cordaro, Olivares, D. Gave, D. Salazar-Aravena, D. Laroze Advance in Space Research .49 (2012) 1670-1683. Published 2012.

Observation of intensity of cosmic rays and daily magnetic shifts near meridian 70 in the South America. E.G. Cordaro, D. Galvez, D. Laroze. Journal of Atmospheric and Solar-Terrestrial Physics 142(2016) 72-82. https://dx.doi.org/10.1016/j.jastp.2016.02.015. Published 2016

Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margina Enrique. Cordaro, Patricio Venegas, David Laroze. Annales Geophysical 36.275-285,2018. https://doi.org/10.5194/angeo-36-275-2018. Published 2018

Variations of geomagnetic cutoff rigidity in the southen hemisphere close to 70° W (South-Atlantic Anomaly and Antarctic zones) in the period 1975-2010. E.G. Cordaro, P, Venegas-Aravena, D. Laroze. Advances in Space research 63(2019) 2290-2299.https://doi.org/10.1016/j.asr.2018.12.019 Published 2019

A review and upgrade of the lithospheric dynamics in context of the seismo-electromagnetic the Published 2019. Patricio Venegas-Aravena, Enrique G, Cordaro, David Laroze. Natural Hazards and Earth System Sciences.19.1639-1651.2019. https://doi/10.5194/nhess-19,1639, 2019. Published 6. August 2020.

The spatial-temporal total friction coefficient of the fault viewed from the perspective of seism-electromagnetic theory. Patricio Venegas-Aravena, Enrique G, Cordaro, David Laroze .Natural Hazards and Earth System Sciences .20, 1485–1496, 2020 https://doi.org/10.5194/nhess-20-1485-2020Publishead May-june 2020

Bibliografía de apoyo requerida:

Astronomie Générale. P. Bakouline et al Mir – Moscou Cosmic Rays Variations. L. I Dorman. State Publishing House for Technical and Theoretical Literature. Moscow. URSS Introduction to Space Physics : Kivelson & Russell, Cambridge USA Cosmic Rays: Martin Pomerantz, Franklin Institute USA. Plasma Physics for Astrophysics : Russell M. Kulsrud, Princeton USA