

PROGRAMA DE CURSO

Código	Nombre	Nombre					
EL7031		Robotics, Sensing and Autonomous Systems					
Nombre	Nombre en Inglés						
		Robotics, Se	nsing and Autonom	ous Systems			
CCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo		
	SCT	Docentes	Cátedra	Auxiliar	Personal		
6		10	3.5	1.5	5.0		
	Requisitos Carácter del Curso						
EL4003 Signals & Systems 2			Electivo				
Resultados de Aprendizaje							
At the end of the course, the student will understand:							
1) The functionality of range measurement sensors in robotics.							
2) The ability to derive sensor models and understand sensor uncertainty.							
3) Kinematic and dynamic system models.							
4)	4) The application of linear estimation and data fusion for robotics and tracking.						
5) The application of probabilistic data association in robotics.							
6)	6) Methods which implement Bayes Theorem in sensor fusion.						

7) Use and application of unscented Kalman and particle filters in robotics.

8) Grid based and feature based robotic mapping.

Unidades Temáticas

Número Nombre		Nombre	e de la Unidad	Duración en Semanas	
1	1 Sensors in Ro		obotic Applications	5	
	Contenidos		Resultado de Aprendizaje de Unidad	e la	Referencias a la Bibliografía
1.	Tracki (Conju photog corres	ras - Use of Vision in ing and Robotics ugate points, disparity, grammetry, spondence problem, ation and edge matching ods).	At the end of this unit, the stud will: 1) Understand the physic working principles or e sensing type.	al ach	[2], [5]
2.	includ	e Triangulation Sensors ing depth (Triangulation accuracy trade-offs).	 Learn how to derive an use sensor models. Learn how noise affect each type of sensor, and type of sensor. 	S	
3.	Time	of Flight (TOF) Cameras.	how to estimate senso uncertainty.		
4.	Rangi sensir Contir range	R - Laser Detection and ng Sensors (Co-axial ng, Amplitude Modulated nuous Wave (AMCW) estimation, AMCW analysis).			
5.	Rangi equati range Frequ Contir	R - Radio Detection and ng Sensors (Radar on, Received power vs. spectra interpretation, ency Modulated nuous Wave (FMCW) estimation, noise es).			
6.	and R (Refle Specu Flight Interpr	R - Sound Navigation anging Sensors ction of waves – ılar vs. diffuse, Time of (TOF) sensing, reting sonar – Regions nstant Depth (RCDs)).			

Número Nombre de la Unidad Duración en Semanas					
		on and Estimation in Robotics		6	
2 Probabilistic Data Fusic					-
Contenidos		Resu	lltado de Aprendizaje de	e la	Referencias a
			Unidad		la Bibliografía
Th	ef Review of Bayes eorem and different tation used.	will:	end of this unit, the stud		[3], [4], [6], [7].
est alp tar	acking (Applying linear timation to target tracking, oha-beta trackers, dynamic get models, software plementations).	1) 2)	Revise Bayes theorem be able to apply it to discrete and continuou sensor fusion problems Understand the importa of conditional	S S.	
ass apj dat for	onditional independence sumptions necessary for plying Bayes theorem in ta fusion (definition of state conditional independence sensor measurements).	3)	independence in data fusion systems. Understand how to app linear, non-linear and r parametric estimation	non-	
me Un (Ul	on-parametric Bayesian ethods based on the iscented Kalman Filter KF) and Monte Carlo based rticle filters.	4)	statistical uncertainty a	ng of Ind	
un elli	epresenting statistical certainty (Uncertainty ipsoids & Monte Carlo ethods).	5)	be able to represent it meaningful way. Understand methods a issues of implementing above in software.	nd	
(Čo aco wh sys	stem Kinematic Models onstant velocity, celeration models, discrete nite noise acceleration stems, digitizing continuous ne systems).				

Número	Nombro	e de la U	nidad	Dura	ción en Semanas
3 Autonomous					4
Contenidos		Resu	Iltado de Aprendizaje de	e la	Referencias a
			Unidad		la Bibliografía
Scientific articles which present recent advances in:		At the e will:	end of this unit, the stud	ents	[1], [8], [9], [10], [11].
hybri trans	itions of complete and d states and Markov ition kinematics and mics.	1)	probabilistic technique non-linear robotic syste	ems.	
veloo mod	ot motion (odometric and city based kinematic els, Markov assumptions, ces of uncertainty).		Learn how to derive an use non-linear measurement models. Learn robot localization	า	
(Defi Forw rand	or measurement models nition of a sensor model, vard sensor models, om, false and missed		techniques based on the extended Kalman filter (EKF) and Monte-Carlo methods.	D	
	ctions, range uncertainty).	4)	Learn Grid-based robo localization and mappi		
issue exter	ot localization (algorithmic es in implementing nded Kalman Filter (EKF) Monte-Carlo methods).	5)	Understand the joint probabilistic estimation concept of Simultaneo Localisation and Map		
map conc indej inver occu	based localization and bing (Uncertainty grid epts, grid cell bendence assumptions, se measurement models, pancy grid mapping with ard sensor models).	6) 7)	(SLAM) building.		
6. Grap Loca build (Gra relat cons in inf facto	hical Simultaneous lisation and Map (SLAM) ing methods phSLAM, scan matching, on to mass-spring traint systems, estimation ormation space, rizing the posterior nates).		Rao-Blackwellisation methods for solving SL Learn new methods of statistical representation based on set theory.	.AM.	
Black solut cond robo samp poste	cle filtering and Rao- kwellisation (A factored ion to the SLAM problem, itionally independent t maps, importance bling, maximum a- eriori (MAP) and expected steriori (EAP) maps).				
	lom Finite Set (RFS) d SLAM and advanced				

UNIVERSIDAD DE CHILE	
methods (Introduction to Finite Set Statistics (FISST) and Bernoulli representations of uncertainty).	

Bibliografía General

Bibliografía Básica

[1] S. Thrun, W. Burgard & D. Fox, "Probabilistic Robotics", MIT Press, 2005.

[2] M.D. Adams, "Sensor Modelling, Design & Data Processing for Autonomous Navigation", World Scientific Publications 1999.

[3] Peter S. Maybeck, "Stochastic Models, Estimation and Control", Volume 1, Academic Press, 1979.

[4] James V. Candy, *"Bayesian Signal Processing - Classical, Modern and Particle Filtering Methods*", John Wiley & Sons, 2009.

Bibliografía Complementaria

[5] Mongi A. Abidi & Rafael C. Gonzales, *"Data Fusion in Robotics & Machine Intelligence"*, Academic Press 1992.

[6] Y. Bar-Shalom, X. Rong Li, T. Kirubarajan, *"Estimation with Applications to Tracking and Navigation"*, John Wiley & Sons, 2001.

[7] J.K. Uhlmann, *"Dynamic Map Building and Localisation: New Theoretical Foundations"* PhD thesis, University of Oxford, 1995.

[8] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte and M. Csorba, "A *Solution to the Simultaneous Localistaion and Map Building (SLAM) Problem*", IEEE Transactions on Robotics and Automation, Vol. 17, No. 3, June 2001.

[9] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "*FastSLAM: A factored solution to the Simultaneous Localization and Mapping problem*", Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002.

[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges", Proceedings of the 18th International Joint Conference on Artificial intelligence (IJCAI), Acapulco, Mexico, 2003.

[11] J.S. Mullane, B.N. Vo, M.D. Adams, B.T. Vo, "*Random Finite Sets for Robot Mapping and SLAM - New Concepts in Autonomous Robotic Map Representations*", Springer Tracts in Advanced Robotics No. 72, May 2011.

Vigencia desde:	
Elaborado por:	Martin Adams