

PROGRAMA DE CURSO

Código	Nombre				
MA5703	Laboratorio de Control Óptimo				
Nombre en	Inglés				
Laboratory	of Opti	mal Control			
SCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo
301		Docentes	Cátedra	Auxiliar	Personal
6		10	2	1	7
	Requisitos Carácter del Curso				del Curso
MA5701 er	MA5701 en paralelo o autorización Electivo				
		Res	sultados de Aprendi	zaje	

El alumno desarrollará sus habilidades analíticas y computacionales en Control Óptimo a través de la implementación de métodos y la simulación numérica de modelos, utilizando para ello el software MATLAB. Aplicará diversos conceptos fundamentales del Control Óptimo, como los criterios de controlabilidad (Kalman), de optimalidad (principio del máximo Pontryagin) y el principio de la programación dinámica. Los modelos que se estudiará provienen de problemas aplicados tales como la estabilización del péndulo invertido, la optimización de trayectorias, la gestión óptima de recursos naturales y la gestión de biorreactores. Al finalizar este curso, el alumno habrá fortalecido además las siguientes capacidades: destreza en técnicas de modelamiento matemático, análisis de resultados numéricos y síntesis de conclusiones a partir de los mismos, organización y planificación del trabajo individual y en equipo, diseño de estrategias para resolver problemas, habilidades en las relaciones interpersonales, capacidad para comunicar sus ideas y trabajar en grupo.

Metodología Docente

Se realiza una clase introductoria la primera semana para presentar los objetivos del laboratorio y el uso del software. El curso se divide en dos actividades principales: laboratorios y proyectos. Los laboratorios son siete y las sesiones frente al computador se realizan semana por medio en una sala especialmente equipada. Cada sesión de consta de dos módulos extendidos, esto es, se puede extender hasta por cuatro horas como máximo. Son dirigidos a través de una guía para cada sesión. Debe presentarse un informe de cada laboratorio la semana siguiente, pudiendo haber también una presentación oral esa semana. Por otra parte, los proyectos son presentados al principio del semestre. Consisten en una serie de problemas entre los cuales los alumnos, quienes se organizan en grupos, deben escoger uno a desarrollar. Hay una primera presentación de avance de cada proyecto la semana 10 del semestre, donde el profesor puede sugerir modificaciones, mejoras y cambios a cada proyecto. Luego, al final del semestre hay una semana completa dedicada a las presentaciones finales de los proyectos (presentaciones de 40 minutos cada una).

Evaluación General

La evaluación de los laboratorios está focalizada en la realización de las actividades ya que la asistencia a los laboratorios y la presentación de los informes finales de cada uno de estos es obligatoria. Habrá una nota de laboratorios (NL) que será un promedio ponderado entre la evaluación in situ y la presentación del informe la semana siguiente a cada laboratorio. La evaluación de los proyectos constituirá la nota única de examen (NE) y será un promedio ponderado del avance, presentación final oral e informe final del proyecto. La ponderación entre NE y NL será estipulada por el docente responsable del curso, pero en todo caso deberán aprobarse ambas actividades por separado como es usual.

Resumen de Unidades Temáticas

Número	Nombre de la Unidad	Duración
		en
		Semanas
Lab 1	Introducción	0.5
Lab 2	Controlabilidad y observabilidad de un sistema lineal	2
Lab 3	Estabilidad y detectabilidad de un sistema lineal	2
Lab 4	Filtro de Kalman discreto	2
Lab 5	Problemas de tiempo mínimo	2
Lab 6	Principio del máximo de Pontryagin	2
Lab 7	Ecuaciones de Hamilton-Jacobi-Bellman	2
Proyecto	 Temas varios: Dos ejemplos de proyectos son los siguientes: Modelar, simular, estimar y controlar la dinámica de un sistema mecánico como el péndulo invertido. Aplicar el modelo de Ramsey para simular el crecimiento de una economía. 	2.5
	TOTAL	15.0

Nota sobre compatibilidad: Este laboratorio está diseñado para ser compatible con otro similar simultáneo para una misma generación. En este caso, la semana introductoria podría ser común. Además, se puede compartir un horario común para las salas de computadores equipadas.

Semana	Módulo presentaciones	Módulos frente a computador
1	Sesión introductoria común (2h)	Laboratorio 1 común (4h)
2	Presentación de proyectos (2h)	Laboratorio2 paralelo (4h)
3	Informe Laboratorio 2 paralelo (2h)	Laboratorio 2 (4h)
4	Informe Laboratorio 2 (2h)	Laboratorio 3 paralelo (4h)
5	Informe Laboratorio 3 paralelo (2h)	Laboratorio 3 (4h)
6	Informe Laboratorio 3 (2h)	Laboratorio 4 paralelo (4h)
7	Informe Laboratorio 4 paralelo (2h)	Laboratorio 4 (4h)
8	Informe Laboratorio 4 (2h)	Laboratorio 5 paralelo (3h)
9	Avance de proyectos paralelo (2h) Informe Laboratorio 5 paralelo	Laboratorio 5 (4h)
10	Avance de proyectos (2h) Informe Laboratorio 5	Laboratorio 6 paralelo (4h)
11	Informe Laboratorio 6 paralelo (2h)	Laboratorio 6 (4h)
12	Informe Laboratorio 6 (2h)	Laboratorio 7 paralelo (4h)
13	Informe Laboratorio 7 paralelo (2h)	Laboratorio 7 (4h)
14	Evaluación Proyectos paralelo (2h)	Evaluación Proyectos paralelo (4h)
15	Evaluación Proyectos (2h)	Evaluación Proyectos (4h)

Unidades Temáticas

Número	Nombre	e de la Unidad	Duración en Ser	manas
Lab 1	Inti	oducción.	0.5	
	Contenidos	Resultados de Aprendizajes de Unidad	e la Referencia Bibliogra	
cálculo • Parte E • Parte (A. Comandos básicos y o vectorial. 3. Funciones vectoriales. C. Gráficos 1d, 2d y 3d. D. Aplicaciones (ver crafía).	El objetivo de esta primera sesión que el alumno se familiarice con e sofware matlab. Si el alumno está familiarizado con él, los primeros ejercicios debieran ser fáciles y se puede avanzar a los siguientes de mayor complejidad. Si no está familiarizado, debe realizarlos des el comienzo y leer el pequeño resumen de comandos matlab.	revisar el lib ya Moler,C. (disponible web), en pa el Cap. 2 sol ecuaciones	en rticular ore

Número	Nombre	e de la Unidad	Dura	ción en Semanas
Lab 2	Controlabilidad y obse	rvabilidad de un sistema lineal	2	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
movim cargue • Parte E contro	3. Análisis de la labilidad y observabilidad odelo usando herramientas	El objetivo de este laboratorio es determinar la controlabilidad y observabilidad de un sistema line controlado. Para esto, se pide ver los respectivos criterios de maner directa y usando el Toolbox de Co de MATLAB. También se estudian conceptos relacionados como la n Grammiana y la forma canónica d Brunovski.	ificar ra ontrol matriz	[1,2,3]

Número	Nombre de la Unidad Dura		ción en Semanas	
Lab 3	Estabilidad y detecta	abilidad de un sistema lineal		2
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
regulace Parte I Parte C	A. Estabilidad y dores. 3. Estimadores de estado. C. Conexión entre dores y estimadores	El objetivo de este laboratorio es estudiar la estabilidad y detectabi de un sistema lineal. Utilizaremos el modelo introducido en el Laboratorio 2 pa navegación de un barco sujeto a corrientes marinas.		[1,2,3]

Número	Nombre de la Unidad Durad			ción en Semanas
Lab 4	Filtro de	Kalman discreto		2
	Contenidos	Resultados de Aprendizajes d Unidad	e la	Referencias a la Bibliografía
Kalma Parte I de un Parte I	A. Teoría del filtro de n discreto. 3. Aplicaciones: Calibración Modelo. C. Aplicaciones: Estimación Sistema.	En este laboratorio se persigue el doble propósito de desarrollar el trasfondo teórico básico asociado filtro de Kalman discreto, y asimis modelar y analizar un par de aplicaciones utilizando este conce	mo	[6]

Número	Nombre de la Unidad Dura			ción en Semanas
Lab 5	Problemas	de tiempo mínimo		2
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
cohete método • Parte I en tien	A. Control de un carro- en tiempo mínimo y o de resolución directo. 3. Despegue de un cohete npo mínimo y método de ción indirecto.	En este laboratorio se resuelve numéricamente dos problemas de control óptimo a tiempo mínimo. introducirán dos métodos: el direc el indirecto.	Se	[3,4]

Número	Nombre de la Unidad Dura		ción en Semanas	
Lab 6	Principio del n	náximo de Pontryagin		2
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
 Parte I Princip Pontry Parte C las cor 	A. Modelamiento. B. Formulación del bio del Máximo de agin (PMP). C. Resolución numérica de adiciones de optimalidad por el PMP.	El objetivo de este laboratorio es utilizar el principio del máximo de Pontryagin para un problema específico y resolverlo numéricam utilizando una aplicación de Matla apropiada.	nente	[3,5]

Número	Nombre de la Unidad Dur		Dura	Duración en Semanas	
Lab 7	Ecuaciones de H	amilton-Jacobi-Bellman		2	
(Contenidos Resultados de Aprendizajes de la Unidad		e la	Referencias a la Bibliografía	
 Parte A. Ecuación de HJB en Control Óptimo:Una introducción. 		En este laboratorio se ilustra la relación existente entre las ecuaci de Hamilton-Jacobi-Bellman (HJB)		[4]	

•	Parte B. Estudio analítico del
	Carro-Cohete mediante HJB.

 Parte C. Estudio numérico del Carro-Cohete mediante HJB contol óptimo. Se analiza un problema de control óptimo resolviendo numéricamente una de estas ecuaciones.

Número	Nombre	e de la Unidad	Dura	ción en Semanas
Proyectos	Ter	mas varios		2.5
Contenidos		Resultados de Aprendizajes d Unidad	e la	Referencias a la Bibliografía
alumnos los pro pide a los alumi que se ajuste m proyectos se pu pequeños.	nestre se presentan a los oyectos disponibles. Se les nos que seleccionen uno ás a sus intereses. Los neden realizar en grupos	Se espera que el alumno desarroll con su grupo un proyecto numéric cual deberá presentar en un prim avance a mediados de semestre y luego en una presentación final cor resultados obtenidos. El alumno a través del proyecto aplicará los	co, el er on los	
Ejemplos de temas de proyectos: - Modelar, simular, estimar y controlar la dinámica de un sistema mecánico como el		conocimientos teóricos y numéric aprendidos a un problema de may complejidad.		
péndulo invertido. - Aplicar el modelo de Ramsey para simular el crecimiento de una economía.				

Bibliografía

- [1] Wendell H. Fleming & Raymond W. Rishel, *Deterministic and Stochastic Optimal Control,* Springer-Verlag, 1975.
- [2] Eduardo D. Sontag, *Mathematical Control Theory: Deterministic Finite Dimensional Systems*, Springer, 1998.
- [3] Emmanuel Trélat, *Contrôle optimal : théorie & applications* Vuibert, Collection "Mathématiques Concrètes", 2005.
- [4] Lawrence C. Evans, *An Introduction to Mathematical Optimal Control Theory,* Lecture Notes. http://math.berkeley.edu/~evans/control.course.pdf
- [5] M. Cizniar, M. Fikar, and M.A. Latifi: *MATLAB Dynamic Optimisation Code DYNOPT, User's guide*, Technical Report, KIRP FCHPT STU, Bratislava, 2006.

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=271

[6] Greg Welch and Gary Bishop, *An introduction to the Kalman Filter*, TR 95-041, Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, 2006 http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

Vigencia desde:	2011-2
Elaborado por:	Material generado 2009-2 por Julio Backoff y Oscar Peredo bajo la supervisión del Profesor Héctor Ramírez.
	Revisado por Felipe Alvarez.
Revisado por:	Axel Osses (Jefe Docente)