

PROGRAMA DE CURSO

Código	Nomb	re				
MA4703	Contr	Control Óptimo : Teoría y Laboratorio				
Nombre en	Inglés					
Optimal Co	ntrol:	Theory and Laborato	ry			
SCT		Unidades	Horas de	Horas Docencia	Horas de Trabajo	
301		Docentes	Cátedra	Auxiliar	Personal	
9		15	3	1.5 (aux) + 3 (lab)	7.5	
		Requisitos		Carácter d	el Curso	
MA4801 Análisis Funcional Obligatorio. Curso de Espec				Especialidad y		
	Postgrado					
		Res	sultados de Apre	ndizaie		

Resultados de Aprendizaje

Conocer los fundamentos teóricos y algorítmicos de la teoría matemática de control óptimo. Conocer la teoría de controlabilidad y optimización de sistemas dinámicos deterministas descritos en tiempo continuo. Aprender y aplicar diversos conceptos fundamentales del Control Óptimo, como los criterios de controlabilidad (Kalman), de optimalidad (principio del máximo Pontryagin) y el principio de la programación dinámica. Desarrollar habilidades computacionales a través de la simulación numérica de modelos y de la implementación de métodos para la resolución de problemas de control óptimo lineales y no lineales, utilizando para ello el software MATLAB. Los modelos que se estudiará provienen de problemas aplicados tales como la estabilización del péndulo invertido, la gestión óptima de recursos naturales y la gestión de biorreactores. Al finalizar este curso, el alumno habrá fortalecido además las siguientes capacidades: destreza en técnicas de modelamiento matemático, análisis de resultados numéricos y síntesis de conclusiones a partir de los mismos, organización y planificación del trabajo individual y en equipo, diseño de estrategias para resolver problemas, habilidades en las relaciones interpersonales, capacidad para comunicar sus ideas y trabajar en grupo.

Metodología Docente

Clases de cátedra teóricas y auxiliares prácticas. Para un mayor desarrollo de la fortaleza del cálculo científico, el curso se complementa curso con laboratorios teórico-computacionales dirigidos y proyectos aplicados a través de los laboratorios asociados.

Evaluación General

3 controles y un examen conforman la Nota de Control (NC). La realización de 6 de 7 laboratorios obligatorios y presentación de un proyecto aplicado conforman la Nota de Laboratorios (NL). La asistencia a los laboratorios es obligatoria. La evaluación de cada laboratorio será un promedio ponderado entre la evaluación in situ y la presentación del informe la semana siguiente a cada laboratorio. La evaluación de los proyectos constituirá una nota y será un promedio ponderado del avance, presentación final oral e informe final del proyecto. NL será un promedio ponderado de los laboratorios y del proyecto. La nota del curso final será 60% NC y 40% NL. Ambas actividades deben aprobarse por separado.

Resumen de Unidades Temáticas

Número	Nombre de la Unidad	Duración en Semanas
1	Control de sistemas lineales	7
2	Teoría del control óptimo no lineal	4
3	Programación dinámica y ecuaciones de Hamilton-Jacobi-Bellman	4
	TOTAL	15.0

Número	Nombre de la Unidad	Duración en
		Semanas
Lab 1	Introducción	0.5
Lab 2	Controlabilidad y observabilidad de un sistema lineal	2
Lab 3	Estabilidad y detectabilidad de un sistema lineal	2
Lab 4	Filtro de Kalman discreto	2
Lab 5	Problemas de tiempo mínimo	2
Lab 6	Principio del máximo de Pontryagin	2
Lab 7	Ecuaciones de Hamilton-Jacobi-Bellman	2
Proyecto	 Temas varios: Dos ejemplos de proyectos son los siguientes: Modelar, simular, estimar y controlar la dinámica de un sistema mecánico como el péndulo invertido. Aplicar el modelo de Ramsey para simular el crecimiento de una economía. 	2.5
	TOTAL	15.0

Nota sobre compatibilidad: Este laboratorio está diseñado para ser compatible con otro similar simultáneo para una misma generación. En este caso, la semana introductoria podría ser común. Además, se puede compartir un horario común para las salas de computadores equipadas.

Semana	Módulo presentaciones (miércoles) de 10h15 a 11h45 (1.5hrs)	Módulos frente a computador (viernes) de 16h00 a 19h30 (3.5hrs)
1	Sesión introductoria común	Laboratorio 1 común, formación de grupos
2	Proposición posibles de proyectos	Laboratorio2 paralelo
3	Informe Laboratorio 2 paralelo	Laboratorio 2
4	Informe Laboratorio 2	Laboratorio 3 paralelo
5	Informe Laboratorio 3 paralelo	Laboratorio 3
6	Informe Laboratorio 3	Laboratorio 4 paralelo
7	Informe Laboratorio 4 paralelo	Laboratorio 4
8	Informe Laboratorio 4	Laboratorio 5 paralelo
9	Avance de proyectos paralelo	Laboratorio 5

UNIVERS	BIDAD DE CHILE	
	(2hInforme Laboratorio 5 paralelo	
10	Avance de proyectos	Laboratorio 6 paralelo
	Informe Laboratorio 5	
11	Informe Laboratorio 6 paralelo	Laboratorio 6
12	Informe Laboratorio 6	Laboratorio 7 paralelo
13	Informe Laboratorio 7 paralelo	Laboratorio 7
14	Evaluación Proyectos paralelo	Evaluación Proyectos paralelo
	Informe Laboratorio 7	
15	Evaluación Proyectos	Evaluación Proyectos

Unidades Temáticas

Número	Nombre de la Unidad Durad		ción en Semanas	
1	Control de	sistemas lineales		7
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
•	Contenidos	Unidad		la Bibliografía
1. Formulació	n de problemas de	El estudiante:		
control óptim	0.	1. Determina la controlabilida	d u	
2. Controlabili	dad y observabilidad de	observabilidad de sistemas		
sistemas linea	les.	lineales.		
3. Principio ba	ng-bang.	2. Determina condiciones de		
4. Control de t	tiempo óptimo de	optimalidad de un problema d	e	
sistemas linea	les.	tiempo óptimo lineal. Resuelve	ē	3, 6
5. Teoría linea	l cuadrática. Ecuación	problemas simples.		
de Riccati y su	s propiedades. Filtro de	3. Determina condiciones de		
Kalman.		optimalidad de un problema li	neal	
		cuadrático. Conoce las aplicaci	ones	
		de la teoría lineal cuadrática y	del	
		filtro de Kalman.		

Número	Nombre de la Unidad Dura		ción en Semanas	
2	Teoría de con	trol óptimo no lineal		4
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
	Contenidos	Unidad		la Bibliografía
1. Resultados	de existencia de	El estudiante:		
problemas de	control óptimo no	1. Conoce los resultados de		
lineal.		existencia y unicidad.		
2. El Principio	del Máximo de	2. Determina condiciones de		
Pontryagin.		optimalidad de un problema n	0	
3. Revisión de	métodos numéricos de	lineal utilizando el Principio de	el	2, 3, 4, 5, 6
control óptimo	D.	Máximo. Resuelve problemas		
4. Aplicaciones	s del Principio del	simples.		
Máximo en problemas de economía,		3. Conoce las alternativas de		
física, ingeniería, etc.		resolución numérica de proble	mas.	
		4. Conoce distintas aplicacione	s del	
		Principio del Máximo.		

Número	Nombre	e de la Unidad	Dura	ción en Semanas
3	Programación dinámi	ca y ecuaciones de Jamilton-		4
	Jaco	bi-Bellman		
	Contenidos	Resultados de Aprendizajes d	le la	Referencias a
		Unidad		la Bibliografía
1. El algoritmo	de programación	El estudiante:		
dinámica. Prin	cipio de Bellman.	1. Conoce y aplica el principio	de	
2. Programaci	ón dinámica en tiempo	Bellman a problemas de		
discreto.		programación dinámica.		
3. Programaci	ón dinámica en tiempo	2. Conoce la formulación y		
continuo. Fun	ción valor y ecuaciones	resolución de problemas de		1, 3, 6
de Jamilton-Ja	cobi-Bellman (HJB).	programación dinámica en tier	npo	
4. Revisión de	métodos numéricos	discreto.		
para resolver	HJB y sintetizar el	3. Deriva la ecuación de HJB de	e un	
control óptim	0.	problema de control óptimo.		
5. Relaciones	y diferencias entre el	4. Conoce como resolver y		
Principio del N	Náximo y las ecuaciones	sintetizar un control óptimo		
de Jamilton-Ja	cobi-Bellman.	mediante las ecuaciones de HJ	B.	
6. Aplicacione	S.			

Laboratorios

Número	Nombre	e de la Unidad	Dur	Duración en Semanas	
Lab 1	Inti	roducción.		0.5	
	Contenidos	Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía	
cálculo • Parte I • Parte (A. Comandos básicos y o vectorial. 3. Funciones vectoriales. C. Gráficos 1d, 2d y 3d. D. Aplicaciones (ver grafía).	El objetivo de esta primera sesión que el alumno se familiarice con e sofware matlab. Si el alumno está familiarizado con él, los primeros ejercicios debieran ser fáciles y se puede avanzar a los siguientes de mayor complejidad. Si no está familiarizado, debe realizarlos des el comienzo y leer el pequeño resumen de comandos matlab.	el ya	Se recomienda revisar el libro de Moler,C. (disponible en web), en particular el Cap. 2 sobre ecuaciones lineales y el ejemplo de PageRank de Google.	

Número	Nombre de la Unidad Dura			ción en Semanas
Lab 2	Controlabilidad y obser	rvabilidad de un sistema lineal		2
	Contenidos	Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
movim cargue • Parte I contro	3. Análisis de la labilidad y observabilidad odelo usando herramientas	El objetivo de este laboratorio es determinar la controlabilidad y observabilidad de un sistema linei controlado. Para esto, se pide ver los respectivos criterios de maner directa y usando el Toolbox de Co de MATLAB. También se estudian conceptos relacionados como la n Grammiana y la forma canónica d Brunovski.	ificar ra ntrol	[1,2,3]

Número	Nombre de la Unidad Dura		Dura	ción en Semanas
Lab 3	Estabilidad y detecta	abilidad de un sistema lineal		2
Contenidos		Resultados de Aprendizajes d Unidad	le la	Referencias a la Bibliografía
regulac • Parte Farte C	A. Estabilidad y dores. B. Estimadores de estado. C. Conexión entre dores y estimadores	El objetivo de este laboratorio es estudiar la estabilidad y detectabi de un sistema lineal. Utilizaremos el modelo introducido en el Laboratorio 2 pa navegación de un barco sujeto a corrientes marinas.		[1,2,3]

Número	Nombre de la Unidad Dura		ción en Semanas	
Lab 4	Filtro de	Kalman discreto		2
Contenidos		Resultados de Aprendizajes d Unidad	e la	Referencias a la Bibliografía
Kalma • Parte de un • Parte	A. Teoría del filtro de n discreto. B. Aplicaciones: Calibración Modelo. C. Aplicaciones: Estimación Sistema.	En este laboratorio se persigue el doble propósito de desarrollar el trasfondo teórico básico asociado filtro de Kalman discreto, y asimis modelar y analizar un par de aplicaciones utilizando este conce	al mo	[6]

Número	Nombre de la Unidad Dura		uración en Semanas	
Lab 5	Problemas de tiempo mínimo		2	
Contenidos		Resultados de Aprendizajes d Unidad	le la	Referencias a la Bibliografía
 Parte A. Control de un carrocohete en tiempo mínimo y método de resolución directo. Parte B. Despegue de un cohete en tiempo mínimo y método de resolución indirecto. 		En este laboratorio se resuelve numéricamente dos problemas de control óptimo a tiempo mínimo. introducirán dos métodos: el direc el indirecto.	Se	[3,4]

Número	Nombre de la Unidad Dura		ración en Semanas	
Lab 6	Principio del máximo de Pontryagin		2	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
 Parte A. Modelamiento. Parte B. Formulación del Principio del Máximo de Pontryagin (PMP). Parte C. Resolución numérica de las condiciones de optimalidad dadas por el PMP. 		El objetivo de este laboratorio es utilizar el principio del máximo de Pontryagin para un problema específico y resolverlo numéricam utilizando una aplicación de Matla apropiada.	nente	[3,5]

Número	Nombre de la Unidad Dura		ción en Semanas	
Lab 7	Ecuaciones de Hamilton-Jacobi-Bellman		2	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
 Parte A. Ecuación de HJB en Control Óptimo:Una introducción. Parte B. Estudio analítico del Carro-Cohete mediante HJB. Parte C. Estudio numérico del Carro-Cohete mediante HJB 		En este laboratorio se ilustra la relación existente entre las ecuac de Hamilton-Jacobi-Bellman (HJB) contol óptimo. Se analiza un prob de control óptimo resolviendo numéricamente una de estas ecuaciones.	y el	[4]

Número	Nombre de la Unidad Durad		ación en Semanas	
Proyectos	Temas varios		2.5	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
Al inicio del semestre se presentan a los alumnos los proyectos disponibles. Se les pide a los alumnos que seleccionen uno que se ajuste más a sus intereses. Los proyectos se pueden realizar en grupos pequeños.		Se espera que el alumno desarrolle con su grupo un proyecto numérico, el cual deberá presentar en un primer avance a mediados de semestre y luego en una presentación final con los resultados obtenidos. El alumno a través del proyecto aplicará los conocimientos teóricos y numéricos aprendidos a un problema de mayor complejidad.		
Ejemplos de temas de proyectos: - Modelar, simular, estimar y controlar la dinámica de un sistema mecánico como el péndulo invertido. - Aplicar el modelo de Ramsey para simular el crecimiento de una economía.				

Bibliografía

- [1] Wendell H. Fleming & Raymond W. Rishel, *Deterministic and Stochastic Optimal Control,* Springer-Verlag, 1975.
- [2] Eduardo D. Sontag, *Mathematical Control Theory: Deterministic Finite Dimensional Systems,* Springer, 1998.
- [3] Emmanuel Trélat, *Contrôle optimal : théorie & applications* Vuibert, Collection "Mathématiques Concrètes", 2005.
- [4] Lawrence C. Evans, *An Introduction to Mathematical Optimal Control Theory,* Lecture Notes. http://math.berkeley.edu/~evans/control.course.pdf
- [5] M. Cizniar, M. Fikar, and M.A. Latifi: *MATLAB Dynamic Optimisation Code DYNOPT, User's guide,* Technical Report, KIRP FCHPT STU, Bratislava, 2006.

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=271

[6] Greg Welch and Gary Bishop, *An introduction to the Kalman Filter*, TR 95-041, Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, 2006 http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

Vigencia desde:	Primavera 2014
Elaborado por:	Héctor Ramírez (2013)
Revisado por:	A ser revisado por Iván Rapaport (Jefe Docente)