

PROGRAMA DE CURSO

Código	Nombre				
ME704		ROBÓTICA Y AUTOMATIZACIÓN DEL DISEÑO			
Nombre en	Inglés				
Robotics ar	nd Design Auto	mation			
	CT	Unidades	Horas de	Horas Docencia	Horas de Trabajo
-	SCT		Cátedra	Auxiliar	Personal
6		10	3.0	0.0	7.0
	Requisitos Carácter del Curso				del Curso
Control de Sistemas				Electivo Magister y Carrera Ing. Civil	
			Mecánica.		
Resultados de Aprendizaje					
Al termino	Al termino del curso el alumno demuestra que:				
Comprende les principales ténices de investigación y les proguntes					

- Comprende los principales tópicos de investigación y las preguntas fundamentales en robótica y automatización del diseño.
- Comprende las herramientas dominantes para la automatización del diseño de robots y máquinas inteligentes.
- Comprende los principios del análisis y síntesis de sistemas robóticos.

Metodología Docente	Evaluación General
La estrategia metodológica que se desarrollará en este curso es: ✓ Clases expositivas. ✓ Lectura de artículos realizada por los alumnos. ✓ Tareas.	La propuesta de evaluación es el proceso en donde el estudiante deberá demostrar sus competencias en las siguientes instancias: • 2 Controles. • 1 Examen. • 5 Tareas. • 1 Exposición de Lectura. • 1 Proyecto final.

Unidades Temáticas

Número	Nombre de la Unidad Dur		Dura	Duración en Semanas	
1	Inti	roducción		1 semana	
Contenidos		Resultado de Aprendizaje de la		Referencias a	
		Unidad		la Bibliografía	
1 Definiciones de robot, robótica.		El alumno/a demuestra que:		3, 4, 5, 15, 16,	
2 La industria robótica mundial,		Conoce la importancia de	la	17	
tendencias y estadísticas.		robótica tanto a nivel			
3 Aplicaciones incipientes de la		industrial como científico.	•		
robótica a nivel nacional.		Conoce la problemática de	el		

4 Preguntas fundamentales de la	diseño de robots.	
robótica actual.		
5 Relación con biología, física,		
neurociencias, ciencia de la		
computación, ingeniería mecánica y		
eléctrica.		
6 Problema fundamental del diseño		
de robots.		
7 Futuro de la robótica y singularidad		
en la inteligencia artificial.		
8 La necesidad de emplear técnicas		
para la automatización del diseño.		

Número	Nombre de la Unidad 📗 🛭		Duración en Semanas	
3	Herramientas de búsqueda 3,5 semanas			3,5 semanas
Contenidos		Resultado de Aprendizaje de	e la	Referencias a

UNIVERSIDAD DE UNILE	Unidad	la Bibliografía
1 Problemas de optimización en	Conoce las principales	6, 7, 11, 12
robótica, caracterización de espacios	herramientas de optimización	
de búsqueda. <i>Deceptive landscapes</i> .	empleadas para la síntesis de	
Complejidad polinomial y fractal.	sistemas robóticos.	
2 Fitness space.		
3 Limitaciones del método del		
gradiente y en la observabilidad de la		
función objetivo.		
4 Métodos para la estimación del		
gradiente.		
5 Algoritmos Genéticos (GA),		
motivación.		
6 Estructura y mecánica de un GA.		
7 Hill Climber.		
8 Building blocks.		
9 Mecanismos de selección,		
combinación y mutación.		
10 Sistemas co-evolutivos.		
11 Simbiosis y simbiogénesis.		
12 Patologías en GAs.		
13 Convergencia prematura. Over		
fitting. No free lunch.		
14 Regularización y <i>early stopping</i> .		
15 Programación genética (GP).		
16 Regresión simbólica (SR).		
17 Ingeniería reversa de sistemas		
dinámicos.		
18 Age-Layered Population Structure		
(ALPS).		
19 ALPS de régimen permanente.		

Número	Nombre de la Unidad Durac		ración en Semanas	
4	Herramienta	s de representación	3,5 semana	
Contenidos		Resultado de Aprendizaje de la Unidad		Referencias a la Bibliografía
1 Problema de representación. 2 Redes neuronales <i>feed-forward</i> y recurrentes.		El alumno/a demuestra que: Conoce el estado del arte en herramientas de representació controladores robóticos.	on de	8, 9, 10, 11

UNIVERSIDAD DE CHILE	
8 HyperNEAT & Novelty Search.	
9 Compositional Pattern Producing	
Networks (CPPNs).	
10 Complexification in Nature.	
11. Principios de regularidad y	
modularidad.	
12. Network Motifs.	
13. Echo State Networks (ESN).	

Número	Nombre	e de la Unidad	Dura	ción en Semanas
5 Síntesis de si		sistemas robóticos	3,5 semanas	
Contenidos		Resultado de Aprendizaje de la Unidad		Referencias a la Bibliografía
1 Real building 2 Diseño mod 3 Prototipado 4 Solid free fo 5 Digital fabri 6 Freeform mod 7 Amorphous 8 Self Assemb 9 Stochastic N 10 Stochastic 11 Evolutionary N 12 Body Brain 13 Principles of 14 Biologically 15 Morpholog 16 Central Pat Dynamical Att 17 Self-Model Machines.	g blocks. ular automatizado. rápido de robots. rm fabrication. cation. echanical design. and soft machines. ly. Modular Assembly. Modular Robotics. ry Robotics and Hardware. Co-Evolution. of Embodiment. y inspired robotics. gical Computation. ettern Generators and etractors. ling and Self-Reflective	Unidad El alumno/a demuestra que: Conoce los principales tópicos síntesis de sistemas robóticos.	de la	1a Bibliografía 5, 12, 13, 17

Bibliografía General

- 1. A. Anderson.: An Introduction to Neural Networks, MIT Press, 1995.
- 2. C.M. Bishop.: Neural Networks for Pattern Recognition, Oxford University Press, USA, 1996.
- 3. R.A. Brooks.: Flesh and Machines, Pantheon Books, New York, NY, 2002.
- 4. R.A. Brooks.: Cambrian Intelligence: The Early History of the New AI, MIT Press, 1999.
- 5. D. Floreano, C. Mattiussi.: Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies (Intelligent Robotics and Autonomous Agents), MIT Press, 2008.
- 6. D.E. Goldberg.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. 1989.
- 7. D.E. Goldberg.: The design of Innovation: Lessons from and for Competent Genetic

Algorithms. Boston, MA: Kluwer Academic Publishers, 2002.

- 8. K. Gurney.: An Introduction to Neural Networks, CRC Press, 1997.
- 9. S. Haykin.: Neural Networks: A Comprehensive Foundation, Prentice Hall, 1994.
- 10. S. Haykin.: Neural Networks and Learning Machines, Prentice Hall, 2008.
- 11. T. Mitchell.: Machine Learning, Macgraw-Hill International, 1997.
- 12. S. Nolfi, D. Floreano.: Evolutionary Robotics, The Biology Intelligence and Technology of Self-Organizing Machines. 2000.
- 13. R. Pfeifer, J.C. Bongard.: How the Body Shapes the Way We Think: A New View of Intelligence, MIT Press, 2006.
- 14. R. Pfeifer, C. Scheier .: Understanding Intelligence. MIT Press, Cambridge Massachusetts. 2001.
- 15. S. Russell.: Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
- 16. S. Thrun, W. Burgard, D. Fox.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), MIT Press, 2005.
- 17. F.J. Varela, E. Thompson, E. Rosch.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge Massachusetts. 1992.

Vigencia desde:	12-07-2010
Elaborado por:	Juan Cristóbal Zagal
Revisado por:	Ramón Frederick
	Área de Desarrollo Docente ADD