

PROGRAMA DE CURSO

Código	Nomb	ore					
MA5203	Aprendizaje de Máquinas Probabilístico						
Nombre e	Nombre en Inglés						
Probabilisti	ic Mach	ine Learning					
		Unidades	Horas de	Horas	Horas de		
SCT		Docentes	Cátedra	Docencia	Trabajo		
		Docentes	Caleura	Auxiliar	Personal		
		10	3	2	5		
Requisitos			Carácter	del Curso			
MA3401 o	MA3401 o MA3403						
	Dec Hadas de Assault als						

Resultados de Aprendizaje

Este curso enseña los fundamentos del enfoque probabilístico para aprendizaje de máquinas, su importancia en relación a otras ramas que requieren análisis de datos y su relación con métodos determinísticos.

Al final del curso, el alumno deberá conocer las propiedades de distintos métodos de aprendizaje probabilístico, cómo máxima verosimilitud, máximo a posteriori, y estimación Bayesiana, tanto para modelos paramétricos como no-paramétricos. El alumno también aprenderá la diferencia entre inferencia exacta y aproximada desde puntos de vista teóricos y aplicados. Finalmente, el alumno deberá implementar las herramientas aprendidas a datos reales en problemas de regresión, predicción, clasificación, selección de modelos y reducción de dimensionalidad.

Metodología Docente	Evaluación General
La metodología del curso comprenderá los siguiente ítems:	La evaluación será en aspectos tanto teóricos como prácticos durante el desarrollo del curso e incluirá: • Participación en clase • Presentaciones y discusiones grupales en base a material de grupo de lectura • Tareas
vistas en cátedra	 Proyecto
 Realización de un proyecto individual 	

Unidades Temáticas

Unidades Temáticas					
Número	Nombre de la Uni	dad	Dur	ación en	
		Se		manas	
1	Contexto			1.5	
		Resultados	de	Referencias	
	Contenidos	Aprendizajes	de la	a la	
		Unidad		Bibliografía	
a) Introduc	ción	- Conocer los		Ver notas	
• Intel	igencia Artificial, fundamentos	fundamentos del		de	
filos	óficos, agentes [IAMA, MA]	aprendizaje de m	áquinas	referencia	
Siste	emas experto versus	en relación a la	·	en cada	
auto	matización [IAMA]	computación clás	ica y a	contenido	
Defin	nición de aprendizaje [LFD, ISL]	la inteligencia arti	ficial		
	nplo: Ajuste de curvas				
	nomiales	- Entender la rela	ción		
Aplic	caciones reales y motivación	entre aprendizaje	de		
		máquinas y razor	namiento		
b) Definició	on de Aprendizaje de	probabilístico			
Máquinas [IAMA cap18]				
• Taxo	onomía: Aprendizaje	- Comprender cómo			
supe	ervisado, no-supervisado, semi-	extraer informacio	ón y		
supe	ervisado, reforzado [LFD]	manejar incertidu	mbre de		
• Sobi	reajuste / subajuste [LFD, ISL]	datos con un enfo	oque		
• Entr	enamiento, validación y test	Bayesiano			
), ISL]				
Nava	aja de Occam y sesgo de				
mue	streo [LFD]				
	zaje mediante inferencia				
probabilíst					
	pasos: modelo, distribución				
	erior, evaluación.				
	encia bayesiana				
	pabilidad como medida de				
incertidumbre					
 Modelos generativos 					
Ejemplo: un modelo de un					
	metro				
Nota	histórica: Bayes y Laplace				

Número	Nombre de la Unidad			uración en Semanas
2	Regresión: inferencia ex	acta y aproximada		3
	Contenidos	Resultados de Aprend de la Unidad	lizajes	Referencias a la Bibliografía
Regule elecci Regree escale	lo lineal [ISL] larización mediante ón de distribución <i>a priori</i> esión no lineal: polinomial, ones, bases, <i>splines</i> [ISL] los lineales generalizados	- Habilidad para formu problema de regresiór resolverlo de forma determinística o probabilística		Ver notas de referencia en cada contenido

[MLPP, ISL	.1
------------	----

- Modelos jerárquicos [BDA]
- Altas dimensiones [ISL] y curse of dimensionality [MLPR]
- Regresión logística [MLPP]
- Aproximación de Laplace
- Nota sobre métodos de Monte Carlo [MLPP]
- Resolver modelos intratables mediante métodos de Monte Carlo
- Realizar predicción en base a datos observados tomando en cuenta conceptos de incertidumbre y sobreajuste

Número	Nombre de la	Unidad	Duración en Semanas	
3	Selección y promedio d	e modelos [MSMA]		1
	Contenidos	Resultados de Aprendizajes de la Un	idad	Referencias a la Bibliografía
IC, No distribution of the contract of the con	cción: Akaike IC, Bayesian egative log-predictive oution [BDA, ESL (ch7)] edio: Maximizar versus ear: enfoque bayesiano s determinista [ITILA]	- Evaluar, seleccionar combinar distintas estructuras de modelo base a índices de desempeño, incluso cuando la cantidad de estructuras es infinita	s en	Ver notas de referencia en cada contenido

Número	Nombre de la Unidad			Ouración en Semanas
4	Clasifica	ción		2.5
	Contenidos	Resultados de Aprendizajes de la Ur	idad	Referencias a la Bibliografía
NaiveTeoríestadVapnESL]	sinos más cercanos [ISL] Bayes [ISL] a de Aprendizaje ístico: La dimensión de ik-Chervonenkis [ISL, LFD, inas de soporte vectorial]	-Representar probabilísticamente problema de clasifica y relacionarlo enfoques determinista -Conocer la teoría aprendizaje estadístic su relación con máquinas de so vectorial -Implementar máquide soporte vectorial	con s. de co y las corte	Ver notas de referencia en cada contenido

Número	Nombre de la Unidad		Duración en	
				Semanas
5	Redes neuronales [ISL, MLPR, DL]			2
Contenidos		Resultados de		Referencias a
	Contenidos	Aprendizajes de la Ur	nidad	la Bibliografía

UNIVERSIDAD DE CHILE		
 Definición, perceptrón, adaline 	-Conocer las estructuras	Ver notas de
 Backpropagation, tipos de redes 	estándar de redes	referencia en
(CNN, RNN, FFNN).	neuronales y técnicas de	cada
Heurísticas	entrenamiento	contenido
 Autoencoders y redes 		
generativas adversariales	-Implementar estructuras	
Deep Learning	actuales de redes	
Bayesian Deep Learning [UDL]	neuronales usando	
3[-1	toolboxes disponibles	
	-Nociones sobre el estado	
	del arte en redes	
	bayesianas	
	Dayosianas	

Número	Nombre de la Unidad		[Ouración en Semanas
6	Procesos gaussi	ianos [GPML]		2
	Contenidos	Resultados de Aprendizajes de la Uni	idad	Referencias a la Bibliografía
funcio una c teore Kolme • Diser media • Repre • Entre comp	trucciones: suma infinita de ones bases, perceptrón de apa infinitamente ancho, ma de consistencia de ogorov io de un GP: Función de a y kernel de covarianza esentación espectral namiento y complejidad utacional se GPs	-Entender el proceso gaussiano (GP) como e límite infinito-dimension de modelos paramétrico -Diseñar un GP e implementarlo con dato reales -Comprender y resolver costos computacionales GPs	el nal os es	Ver notas de referencia en cada contenido

Número	Nombre de la Unidad			Ouración en Semanas
7	Reducción de dimensionalidad			1
C	Contenidos	Resultados de Aprendizaje la Unidad	s de	Referencias a la Bibliografía
 Análisis de componentes principales: lineal, probabilístico y de kernel LDA/ANOVA/ICA 		-Conocer la importancia de técnicas de reducción de dimensionalidad para preprocesamiento de datos visualización e interpretació	,	Ver notas de referencia en cada contenido
		-Dominar distintas técnica reducción de dimensionalid saber cuándo usarlas		

Número	Nombre de la Unidad			Duración en Semanas
8	Clu	ıstering		2
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
spatia applio applio Kerne [MLP] Mezc algori maxir Nota	CAN: Density-based al clustering of cations with noise al density estimation	-Entender la diferencia entr métodos paramétricos y no- paramétricos -interpretar clustering como diseño de un modelo gener -ocupar un enfoque variació para resolver modelos intratables (inferencia aproximada)	el rativo	Ver notas de referencia en cada contenido

Bibliografía General

[IAMA] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1994. Prentice Hall.

[MA] P. Domingues, The Master Algorithm, 2015. Basic Books.

[LFD] Y. Abu-Mostafa, M. Magdon-Ismail and H. Lin, Learning from data, 2012.

[ISL]: G. James, D. Witten, T. Hastie and R. Tibshirani, Introduction to statistical learning, 2013. Springer.

[BDA]: A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, Bayesian Data Analysis, 2013. CRC Press.

[ITILA]: D. MacKay, Information theory, inference and learning algorithms, 2003. Cambrdige.

[MSMA]: G. Claeskens and N. L. Hjort, Model selection and model average,2008. Cambridge.

[PRML]: C. Bishop, Pattern recognition and machine learning, 2006. Springer.

[GP4ML]: C. Rasmussen and C. Williams, Gaussian processes for machine learning, 2006. MIT.

[MLPP]: K. Murphy, Machine learning: A probabilistic perspective, 2012. MIT.

[ESL]: T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning, 2009. Springer.

[LWK]: B. Schölkopf and A. Smola, Learning with kernels, 2002. MIT.

[UDL]: Y. Gal, Uncertainty in Deep Learning, 2015.

http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf

[VI]: D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational Inference: A Review for Statisticians, 2015. https://arxiv.org/abs/1601.00670.

Vigencia desde:	
Elaborado por:	Felipe Tobar
Revisado por:	