Meteorología Física – GF500

Semestre: Otoño primer año -15 semanas de clases -1 semana de examen

Distribución horaria: 6 horas/semana de clase, 6 horas/semana trabajo personal (12 UD)

Horario clases de cátedra: Jueves 15:30 – 17:45

Viernes 15:30 - 17:45

Horario clases auxiliares: Sábado 09:00 – 11:00

Objetivos:

Entregar en forma intensiva y comprensiva los elementos fundamentales de la física de la atmósfera: Termodinámica, microfísica de nubes y transferencia radiativa.

Resumen de Contenidos

Composición y estructura de la atmósfera terrestre. Termodinámica de la mezcla aire seco / vapor de agua. Aerosoles atmosféricos y microfísica de nubes. Transferencia radiativa en la atmósfera.

Programación

Semana	Fecha inicio	Contenidos Clase de Cátedra	Actividades Clase Auxiliar
1	08-Mar	Evolución de la atmósfera terrestre y rol de la biosfera. Constituyentes fijos y variables.	Ciclo del carbono
2	15-Mar	Estructura térmica vertical de la atmósfera y procesos fotoquímicos asociados	Descripción capas atmosféricas: ozonósfera, ionosfera, magnetosfera.
3	22-Mar	Presión atmosférica. Equilibrio hidrostático. Ecuación hipsométrica	Medición presión. Atmósfera estándar y altimetría.
4	29-Mar	Ecuaciones de estado: aire seco y vapor de agua. Ecuación de Clausius-Clapeyron	Especificación de la humedad absoluta del aire. Calor latente.
5	05-Abr	Humedad específica y razón de mezcla. Temperatura virtual, equivalente y de rocío.	Ecuación psicrométrica y aplicaciones
6	12-Abr	Primer principio de la termodinámica. Procesos adiabáticos. Temp. potencial.	Diagramas Termodinámicos NCA. Cont. líquido nubes.
7	19-Abr	Boyantez y estabilidad estática. Inversiones térmicas. Inestabilidad potencial y convectiva.	Cálculos de estabilidad a partir de radiosondeos reales.
8	26-Abr	Segundo principio de la termodinámica. Procesos cíclicos. Entropía. Energía libre.	Determinación de la ecuación de Clausius-Clapeyron
9	03-May	Aerosoles y núcleos de condensación. Saturación y efecto de la curvatura y iones en gotas	Experimento efecto de núcleos de condensación

10	10-May	Crecimiento de gotas por difusión de vapor y coalescencia	Trabajo con curvas de Koehler y modelo simple coalescencia.
11	17-May	Glaciación y proceso de Bergeron. Siembra de nubes.	Discusión sobre eficacia de procesos de siembra de nubes.
12	24-May	Leyes y cuantificación de la radiación. Ecuaciones de transferencia radiativa.	Espectro radiación. Aplicación leyes Wien y Stefan Boltzmann
13	31-May	Radiación solar y partículas. Procesos de emisión y absorción de radiación solar.	Cálculo de la constante solar en planetas
14	07-Jun	Efecto de la atmósfera en la radiación solar. Dispersión. Albedo planetario.	Óptica atmosférica.
15	14-Jun	Radiación terrestre. Modelo efecto invernadero. Contrarradiación atmosférica. Equilibrio radiativo.	Ejercicios de equilibrio radiativo con modelo simple.
16	21-Jun	Examen Final	-

Referencias Básicas

- Wallace J.M., and P. Hobbs, 1977: Atmospheric Science: An introductory Survey. Academic Press. Capitulos 1, 2, 4, 6.
- Atmospheric thermodynamics. Bohren, Albrecht. Oxford, 1998.