

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS QUÍMICAS Y FARMACÉUTICAS DEPARTAMENTO DE CIENCIA DE LOS ALIMENTOS Y TECNOLOGÍA QUÍMICA

Propiedades Físicas y Estructuras de Materiales FBQ13213 Agosto 2015

PROGRAMA

1. INFORMACIÓN GENERAL

Propiedades Físicas y Estructuras de Materiales 1.1 Asignatura: 1.2 Departamento: Ciencia de los Alimentos y Tecnología Química Ingeniería en Alimentos 1.3 Carrera: 1.4 Profesor: Eduardo Castro Montero Fono: 9781662 - 2660326 Cel.: 9-3185995 Correo: ecastro@ciq.uchile.cl Carácter: 1.5 Obligatorio Régimen: Semestral 1.6 1.7 Requisito: **Ecuaciones Diferenciales** 1.8 Cupos: Limitados 1.9 Duración: 1 semestre 1.9.1 **Horas Totales** 3 hrs/alumno 1.9.2 Horas Teóricas 2 hrs/alumno 1.9.3 Horas Prácticas 0 hrs/alumno 1.9.4 **Horas Seminarios** 1 hrs/alumno Nº semanas lectivas 1.9.5 15 1.9.6 Nº créditos 6

VI Semestre

Ayudante: Estivalia Zschau

Semestre

Correo: estivaliazschau@gmail.com

Teléfono Celular: 74980315

2. INTRODUCCIÓN

2.1 Propósitos:

1.10

El Ingeniero en Alimentos, ocupa maquinarias construidas con distintos materiales y a distintas condiciones de presión y temperatura, y la estructura de los alimentos decide si es o no aceptado por los consumidores. Por lo tanto, el alumno debe tener las nociones básicas de ciencia de materiales que permita conocer las historias mecánicas y térmicas que producen las condiciones que rodean al material alimenticio y de las maquinarias.

2.2 Descripción de la Asignatura

Esta asignatura, es el primer contacto del estudiante con las ciencias de la Ingeniería y le entrega los conocimientos fundamentales para entender y aplicar el comportamiento de los materiales y de los alimentos producidos en la industria.

3. OBJETIVOS EDUCACIONALES

3.1 Objetivos Generales:

Lograr que el alumno adquiera capacidad para seleccionar un material de acuerdo a las características científicas para una aplicación determinada.

El alumno adquirirá los conocimientos científicos del comportamiento de los materiales y con ello, podrá elegir los materiales adecuados para el proceso respectivo.

Entregar los fundamentos de la ciencia de los materiales aplicados a alimentos para la optimización del diseño de procesos y alimentos.

3.2 Objetivos Específicos:

3.2.1 Objetivos Específicos de Conocimientos

- Comprender y aplicar los principios de las ciencias de los materiales.
- Entender y aplicar los principios fundamentales de reología y textura.

3.2.2 Objetivos Específicos de Habilidades

- Habilitar al alumno para enfrentar los problemas atingentes al comportamiento de materiales.
- Habilitar al alumno para modelar dicho comportamiento.

3.2.3 Objetivos Específicos de Actitudes

Desarrollar la capacidad de análisis, síntesis y crítica sobre el comportamiento de materiales.

4. CONTENIDOS

4.1 Contenidos del curso

4.1.1 Materiales elásticos

- Fuerza y momentos
- Equilibrios y razones fundamentales
- Estructuras metálicas
- Principios de equilibrio y fundamento para poder calcularlos
- Vigas, apoyo y reacciones
- Fuerzas internas y reacciones
- Fuerzas internas axiales
- Fuerzas internas en vigas y pilares
- Esfuerzos y deformaciones
- Conceptos fundamentales, modelos que representan la deformación elástica
- Ley de Hooke, módulos de Young y cizalla, modelos que representan el comportamiento
- Deformación bajo esfuerzo axial
- Esfuerzo admisible
- Flexión en vigas
- Diseño y análisis de vigas

- Diseño plástico de vigas
- Esfuerzo de cizalla en vigas
- Diseño y cálculo de estanques

4.1.2 Materiales Viscoelásticos

- Materiales, modelo de la potencia
- Materiales, modelo de Bingham
- Materiales, modelo de Herschel-Bulkley
- Equipos para determinar parámetros reológicos
- Viscoelasticidad
- Ensayos transientes
- Análogo mecánico
- Textura

4.2 Bibliografía

-Cerny L. "Elementary Statics and Strenght of Materials". Mc Graw-Hill International Book Company. Tokio (1981).

- -Castro E. "Reología". Serie Monografías sobre Ingeniería en Alimentos. Departamento de Ciencia de los Alimentos y Tecnología Química.
- -Castro E. "Textura de Alimentos". Registro Propiedad Intelectual Nº112249, ISB Nº 95,6,288.485-6. Santiago, Chile (1999).
- -Castro E. y de Hombre R. "Parámetros Mecánicos y Textura de los Alimentos". Departamento de Ciencia y Tecnología Química. Santiago, Chile (2008).
- -Heldman Denis R. "Food Procesess Engineering". The AVI Publishing Company Inc. Wesport. Conecticut (1978).
- -Steffe J.F., 1996. Rheological Methods in Food Process Engineering, 2nd Ed. Pág. 24. Freeman Press, East Lansing, MI.
- -Timoshenko S. "Resistencia de materiales".13º Ed., Espasa-Calpe S.A. Madrid (1976).

5. METODOLOGÍAS

- Clases expositivas
- Seminarios, tareas
- Uso de material audiovisual

6. EVALUACION GENERAL:

Informe I: 30% Informe II: 20% Controles: 25% Prueba global: 25% *EXIMICIÓN CON PROMEDIO ≥ 5.0 Y ASISTENCIA ≥ 75% (A CLASES). *SEMINARIOS OBLIGATORIOS

SOBRE LAS EVALUACIONES DE LA ASIGNATURA:

Informe I: Consiste en un trabajo de investigación el cual se realiza en forma individual. El Tema se otorgará por sorteo. Este informe escrito debe contener: Carta dirigida a Profesor, Portada, Resumen, Introducción, Explicación del material, Aplicación de este en la Industria de Alimentos y otros, Discusión (si aplica), Conclusiones, Bibliografía y Anexos. Además, se debe realizar una base de datos correspondiente (en programa Microsoft Access), la cual se debe enviar junto con el informe escrito a la página u-cursos (en archivo WinRar), en el curso de la asignatura. La entrega del informe escrito es la <u>semana 6</u> y se rebajará un punto a la nota por día de retraso en la entrega.

Informe II: "Cálculo del traslado de un equipo desde puerto San Antonio o Valparaíso (según corresponda) a laboratorio de Procesos, Unitarias o Química y Análisis". Se realiza en grupos de dos personas. Se debe explicar con ideas claras cómo se va a realizar el traslado del equipo, incluyendo planos y cálculos detallados sobre el traslado. El informe escrito se debe entregar la semana 12. Se descontará un punto a la nota por día de atraso. Se tiene que enviar el informe escrito a la página ucursos, en el curso de la asignatura. Los requisitos de este trabajo son:

El traslado no se puede realizar con recursos humanos.

El traslado debe ser significativo, comparable a una situación real.

Controles e informe de Laboratorio: Se realizarán 5 controles durante el semestre en la hora de seminario. La ausencia a uno de ellos debe ser justificada en Secretaría de Estudios. El control recuperativo, sólo se realizará a quienes hayan justificado la ausencia. Adicionalmente, se llevará a cabo un práctico, el que conllevará al desarrollo de un informe experimental, el cual pondera el mismo porcentaje que un control.

C1: Equilibrio Estático y Reacciones en Vigas (Semana 4)

C2: Estructura Rígida Plana (Semana 6)

C3: Fuerzas internas en Vigas (Semana 8)

C4: Dimensionamiento de Equipos (Semana 10)

C5: Textura de Alimentos (Semana 13)

IE: Informe experimental Textura de Alimentos (Semana 13 - 14)

<u>Prueba Global:</u> SE REALIZARÁ 1 PRUEBA GLOBAL AL FINAL DEL PERIODO LECTIVO (SEMANA 14).

7. CALENDARIO

SEMANA

1 2 3 4	Fuerza, momento y relaciones fundamentales. Estructuras metálicas. Principio de equilibrio. Diferentes métodos de cálculos. Vigas, apoyos y reacciones. Fuerzas internas en estrucutras. Fuerzas
5 6 7 8 9 10	internas en vigas. Esfuerzos y deformaciones. Ley de Hooke y módulo de Young. Cizalla y módulo de cizalla. Deformación bajo esfuerzo axial, esfuerzo admisible. Flexión en vigas, diseño y análisis de vigas. Diseño y cálculo de estanques. Reología, reogramas y su análisis. Equipos para medir propiedades
11 12 13	reológicas. Modelos de potencia, Bingham, Herschel-Bulkley. Viscoelasticidad. Ensayos transientes, análogos mecánicos. Modelos mecánicos de alimentos. Kelvin, Peleg, Maxwell. Ensayos de relajación.

CONTENIDO

Temas de INFORME I

1. Acero inoxidable en planchas	22. Mangueras para vapor
2. Acero inoxidable en tuberías	23. Mangueras para aire a presión
3. Acero inoxidable en válvulas	24. Mangueras sanitarias
4. Acero inoxidable en barras	25. Perfiles de acero
5. Acero inoxidable en fittings	26. Pisos antideslizantes
6. Bombas centrífugas	27. Poliestireno expandido
7. Bombas de desplazamiento positivo	28. Poliuretano

8. Bombas dosificadoras	29. Poliéster con fibra de vidrio
9. Cañería para agua industrial	30. Planchas de yeso
10. Cañería y fittings de aire	31. Planchas para techo
11. Cañería PVC	32. Quemadores de gas
12. Cañería para gas natural	33. Quemadores de petróleo
13. Cañerías para instalación eléctrica	34. Rocalit
14. Cañerías para vapor	35. Tecles
15. Caldera	36. Trupan
16. Empaquetaduras para agua caliente, fría y vapor	37. Válvulas de globo
17. Fierro estructural	38. Válvulas reguladoras de presión
18. Ladrillos refractarios	39. Válvulas de seguridad
19. Lana mineral	40. Válvulas solenoides
20. Motores eléctricos	41. Estanques
21. Mangueras para gas	42. Correas de transporte

Temas de INFORME II

Equipos laboratorio de Procesos	16. Evaporador de film ascendente
1. Autoclave	17. Evaporador OLSA o STOKES
2. Caldera	18. Filtro prensa
3Horno Kitchenette	19. Destilador fraccionado
4. Estufa con aire forzado (gris)	20. Ablandador de agua
5. Estufa normal (blanca)	21. Mezcladora/amasadora
6. Mufla	22. Caldera
7. Escaldador	23. Equipo de ultrafiltración
8. Congelador	Equipos laboratorio de Química y Análisis
9. Equipo Lloyd	24Reómetro
10. Pasteurizador	
11. Liofilizador	
12. Secador	
13. Prensa hidráulica	
Equipos laboratorio de Operaciones Unitarias	
14. Desmineralizador o desionizador	
15. Extractor Soxhlet (Extractor Universal Quickfit)	