PROGRAMA DE LA ASIGNATURA

1. Nombre de la actividad curricular

Microbiología

2. Nombre de la actividad curricular en inglés

Microbiology

3. Unidad Académica: Departamento de Biología (FC, NG, RL, AM, CJ) y Departamento de Química (IV)

Profesores/as Coordinadores/as: Francisco Chávez, Nicolás Guilliani, Rosalba Lagos, Andrés Marcoleta

Profesores Colaboradores: Inmaculada Vaca, Carlos Jerez

- **4. Ámbito** (corresponde a la línea desde donde se desprende la asignatura y alude a la familia de problemas que debe enfrentar el/la futuro egresado. Copiar el ámbito desde el plan de estudios)
- -Ámbito de Investigación Biológica Básica (IBB).
- Ámbito de Difusión Científica (DC).

Nivel: 5º semestre Ingeniería en Biotecnología Molecular, 7º semestre

Licenciatura en Biología

Carácter: Obligatorio

Modalidad: Presencial

Requisitos: Bioquímica

4. Horas de trabajo	presencial (directas)	no presencial (indirectas)
Coordinadores/as:		
Francisco Chávez	70	140
Nicolás Guilliani	76	152
Rosalba Lagos	54	108
Andrés Marcoleta	71,5	143

Colaboradores:		
Inmaculada Vaca	3	3
Carlos Jerez	1,5	1,5
Daniela Toro	21	21
Javiera Ortiz	25	25
5. Tipo de créditos SCT	((indique la distribución de horas definida en el plan de formación. Corresponde a la traducción en carga horaria de los sct)	((indique la distribución de horas definida en el plan de formación. Corresponde a la traducción en carga horaria de los sct)

5. Número de créditos SCT - Chile

10

6. Requisitos	Bioquímica	
7. Propósito general del curso	(indique el propósito del curso consignado en el documento "ficha de asignatura")	
	El curso de Microbiología le entrega al estudiante una visión integral y actualizada del conocimiento general de bacterias y virus -sus relaciones y mecanismos de transferencia génica- y de la biología de microorganismos que interactúan con eucariontes, ecología y evolución. Estas materias están organizadas como se describe en el programa de clases.	
	La parte teórica está complementada con actividades prácticas y seminarios, en las cuales se profundizan algunos aspectos tratados en clases.	
	El objetivo de este curso es capacitar al estudiante tanto en el manejo de conocimientos generales acerca de la biología de microorganismos como en la utilización de técnicas básicas de microbiología.	
8. Competencias a las que contribuye el curso	-IBB1: Describir sistemas biológicos para comprender su funcionamiento en base a la observación y análisis. -IBB3: Proponer estrategias de investigación	

respaldadas teórica y metodológicamente en base al problema identificado, utilizando la tecnología disponible y asegurando la calidad de la investigación.

-DC1: Difundir el conocimiento científico y biotecnológico para divulgarlo a diversas audiencias mediante metodologías apropiadas.

9. Subcompetencias

- -IBB1.1: Recopilar información de los sistemas biológicos para la observación científica.
- -IBB1.2: Caracterizar los sistemas biológicos mediante la observación científica
- -IBB1.3: Analizar la información de los sistemas biológicos para comprender su funcionamiento
- -IBB3.1: Proponer las metodologías adecuadas y factibles para abordar el problema de investigación.
- -IBB3.2: Ejecutar la investigación definida en el sistema biológico velando por su calidad.
- -IBB3.3: Analizar los resultados obtenidos y realizar las conclusiones respecto del problema de investigación.
- -DC1.1: Exponer los resultados de investigación en una presentación oral o escrita desde una perspectiva crítica.

10. Resultados de Aprendizaje

Se pueden poner hasta tres o uno sólo y su redacción DEBEN reponder a la pregunta ¿qué se espera que el/la estudiante sepa o logre al finalizar la asignatura?

Identificar a los microorganismos como una parte fundamental de las formas de vida que habitan nuestro planeta, entendiendo de qué manera tienen impacto en las distintas escalas y ecosistemas.

Conocer cuáles son los distintos tipos de microorganismos y comprender a nivel molecular cómo funcionan, qué los distingue, y cómo pueden ser aprovechados para el desarrollo de herramientas biotecnológicas.

Conocer y aplicar correctamente técnicas experimentales para la manipulación y

caracterización de microorganismos.

11. Saberes / contenidos

(nombre de la unidad y temas en cada una)

- Estructura de la célula procarionte. Superficie bacteriana. Pared celular: Composición química y estructura del peptidoglicán. Ácidos teicoicos. Membrana citoplasmática. Membrana externa: lipopolisacárido, proteínas Omp, espacio periplásmico. Fimbrias, flagelo y cápsula.
- Crecimiento bacteriano. Concepto del clon y cepa. Curvas de crecimiento y expresiones matemáticas. Técnicas del cultivo puro. Medios sólidos y líquidos. Cultivos sincrónicos. Crecimiento diáuxico.
- 3) Fisiología bacteriana. Metabolismo y fermentación. Aerobiosis, anaerobiosis, especies facultativas. Microorganismos anaeróbicos. Transporte activo, difusión simple, difusión facilitada, translocación de grupos. Vía general secretoria. Transportadores ABC. Resistencia a antibióticos. Metabolismo energético y ciclos biogeoquímicos.
- 4) **Antibióticos de origen bacteriano y probióticos.** Resistencia a antibióticos. Aplicaciones.
- 5) Comunicación Bacteriana y Quorum Sensing.
- 6) Mecanismos de competencia y Transformación.
- 7) Transducción de señales y Mensajeros secundarios.
- 8) **Replicación del DNA bacteriano.** Estructura de replicación. Ciclo celular y división celular.
- 9) Conjugación, Plasmidios conjugativos y no conjugativos. Replicación, incompatibilidad y partición
- 10) **Patogénesis bacteriana.** Nociones clásicas y contemporáneas sobre patogénesis microbiana y enfermedades infecciosas. Invasividad y toxigénesis. Factores de virulencia. Mecanismos moleculares de patogénesis y respuesta inmune del hospedero.
- 11) Diversidad, fisiología y aplicaciones biotecnológicas de hongos filamentosos.
- 12) **Bacteriófagos.** Virus líticos. Regulación de la expresión génica. Replicación y ensamblaje de la partícula viral. Virus temperados. Fago lambda: expresión vía lítica y lisogénica. Inducción. Transducción generalizada y especializada.
- 13) **Virus Animales.** Picornavirus. Adenovirus. Retrovirus. Ortomixovirus. Coronavirus. Regulación de la expresión viral.
- 14) **Estructura, dinámica y evolución del genoma bacteriano.**Transferencia genética horizontal. Elementos genéticos móviles.
 Pangenoma, genoma núcleo y genoma accesorio. Islas genómicas y de

- patogenicidad. Silenciadores xenogenéticos.
- 15) **Sistemas microbianos de inmunidad CRISPR-Cas.** Aspectos históricos, moleculares y funcionales. Aplicación para la edición de genomas.
- 16) Hologenomas y Microbiomas
- 17) **Aprendizajes prácticos.** Técnicas microbiológicas básicas, uso del microscopio, análisis micro y macroscópico de microorganismos, tinción Gram, titulación. Ensayos sobre resistencia a antibióticos (antibiograma y uso como marcadores de selección) y conjugación bacteriana. Curvas de crecimiento bacteriano, aislamiento de mutantes espontáneos. Identificación de microorganismos y pruebas metabólicas en agares cromogénicos y galerías API.

12. Metodología

(Descripción sucinta de las principales estrategias metodológicas que se desplegarán en el curso, coherente con un enfoque por competencias) Ejemplo: aprendizaje en base a problemas, lecturas, resolución de problemas, estudio de caso, proyectos, etc.).

- -Clases teóricas con diapositivas y pizarra con exposición de docentes sobre el estado del arte en los distintos tópicos abordados. Aprendizaje en base a problemas de investigación discutidos en clases.
- -Seminarios con exposición de grupos de estudiantes sobre investigaciones científicas de alto impacto en temáticas abordadas en el curso, con la incorporación de gamificación y otras actividades lúdicas.
- -Trabajos prácticos de entrenamiento en técnicas experimentales, vinculados directamente con problemas de investigación.
- -Sesiones de solución de dudas con las y los docentes involucrados, de manera previa a cada prueba de cátedra.
- -Sesiones de análisis de los resultados de las evaluaciones de cátedra escritas.

13. Evaluación

(Medio de verificación de /los resultados de aprendizaje) se redacta como un indicador de logro, pueden ser entre 1 y 3 por cada resultado de aprendizaje y deben ser coherentes con los instrumentos planteados.

1) Parte Teórica: corresponde al 70% de la calificación final del curso. Contempla pruebas escritas con preguntas de alternativas y/o de desarrollo, además de una prueba oral. Las pruebas de cátedra 1 y 2 son escritas (PC1 y PC2) y son sobre los contenidos abordados en un número definido de clases. La

prueba 3 (PC3) es oral y sobre todos los contenidos del curso.

Los estudiantes que hayan justificado su inasistencia a una de las dos primeras pruebas teóricas tienen la posibilidad de rendir, al final del semestre, una prueba recuperativa referida a los contenidos de la prueba no rendida. La prueba recuperativa para la inasistencia de la prueba 3 es en modalidad oral.

2) Trabajos Prácticos y Seminarios:

La evaluación de los Trabajos Prácticos y Seminarios utiliza el concepto de "Aprendizaje Basado en Problemas" como herramienta pedagógica, con la cual el estudiante es actor pro-activo (autoaprendizaje). Corresponde a un 30% de la calificación total del curso y se calcula a partir de notas de la Prueba Práctica (PP, hacia el final del curso), Fichas técnicas de laboratorios (FT), y seminarios bibliográficos (SB).

La Nota Final de los trabajos prácticos y seminarios (NTP) se calcula con la siguiente ponderación:

$$NTP = PP*0.3 + FT*0.4 + SB*0.3$$

La Nota Final del curso (NF) se calcula con la siguiente ponderación:

$$NF = PC1*0.2 + PC2*0.2 + PC3*0.3 + NTP*0.3$$

14. Requisitos de aprobación

(Elementos normativos para la aprobación establecidos por el reglamento, como por ejemplo: Examen, calificación mínima, asistencia, etc. Deberá contemplarse una escala de evaluación desde el 1,0 al 7,0, con un decimal.)

Para aprobar el curso se debe obtener una nota igual o mayor a 4,0 tanto en el promedio de cátedra como en el promedio de los trabajos prácticos y seminarios.

15. Palabras Clave

(Palabras clave del propósito general de la asignatura y sus contenidos, que permiten identificar la temática del curso en sistemas de búsqueda automatizada; cada palabra clave deberá separarse de la siguiente por punto y coma (;).

Microbiología; bacterias; arqueas; procariontes; hongos; comunidades microbianas; biopelículas; virus; biotecnología; fermentación; patogénesis; infección; hospedero; genética molecular; genómica; transferencia horizontal;

elegemntos genéticos móviles; antibióticos; extremófilos.

16. Bibliografía Obligatoria (no más de 5 textos)

(Textos de referencia a ser usados por los estudiantes y que estén en la biblioteca. Se sugiere la utilización del sistema de citación APA, y además que se indiquen los códigos ISBN de los textos. Cada texto debe ir en una línea distinta)

15. Bibliografía Complementaria

(Textos de referencia a ser usados por los estudiantes. Se sugiere la utilización del sistema de citación APA, y además que se indiquen los códigos ISBN de los textos. CADA TEXTO DEBE IR EN UNA LÍNEA DISTINTA)

Brock. Biología de los microorganismos. Michael T. Madigan. Pearson.

16. Recursos web

(Recursos de referencia para el apoyo del proceso formativo del estudiante; se debe indicar la dirección completa del recurso y una descripción del mismo; CADA RECURSO DEBE IR EN UNA LÍNEA DISTINTA)

- •http://www.ugr.es/~eianez/Microbiologia/programa.htm
- •https://www.jove.com/science-education-library/84/microbiology (utilizando pasaporte uchile)