

1. UNIDAD ACADÉMICA

Programa Académico de Bachillerato

2. IDENTIFICACIÓN DE LA ASIGNATURA

Nombre de la asignatura: QUÍMICA ORGÁNICA

Requisitos: Química 2

Período: primer semestre 2025

Coordinador de la asignatura: Dr. Daniel Guerra

PROFESOR DE CÁTEDRA	AYUDANTE	PROFESORES DE LABORATORIO
DANIEL GUERRA	CARLOS ARECHE	CARLOS ARECHE
		NICOLÁS CIFUENTES

3. HORAS DE TRABAJO

Cátedra	3,0 horas semanales
Ayudantía	1,5 horas semanales
Laboratorios	12 sesiones de 3 horas cada una

4. OBJETIVO GENERAL DE LA ASIGNATURA / RESULTADOS DE APRENDIZAJE

La asignatura de Química Orgánica permite al estudiante adquirir una base sólida en los principios y conceptos más importantes de la química de los compuestos orgánicos. El enfoque y su profundidad son adecuados para estudiantes de diversas especialidades como la biología, ciencias relacionadas con la salud, agronomía y otros. El interés del curso se ha centrado en los

conceptos básicos de química orgánica, necesarios para la comprensión de las moléculas y sistemas biológicos, para así entender que las reacciones de los procesos bioquímicos se corresponden con las reacciones generales de la química orgánica.

5. OBJETIVOS ESPECÍFICOS DE LA ASIGNATURA

- Reconocer los tipos de enlace que unen a los átomos en las moléculas orgánicas y su relación con la estructura molecular, propiedades físicas y reactividad química.
- Comprender la nomenclatura básica de los compuestos orgánicos.
- Comprender nociones básicas para determinar la estructura molecular.
- Reconocer las reacciones esenciales de los alcanos, alquenos, alquinos, derivados halogenados, compuestos aromáticos, alcoholes, carbonilos, ácidos carboxílicos y sus derivados y aminas.
- Comprender las nociones y reacciones esenciales de las macromoléculas orgánicas incluyendo carbohidratos, proteínas, lípidos y ácidos nucleicos.
- Adquirir experiencia experimental esencial para el manejo de las reacciones orgánicas.

6. SABERES / CONTENIDOS

1. Introducción a la Química Orgánica

Sistematización en grupos funcionales. Enlace químico, energía y estabilidad. Orbitales moleculares. Hibridación de orbitales. Ángulos de enlace. Isomería

2. Hidrocarburos Alifáticos y Alicíclicos

- 2.1 Alcanos y cicloalcanos. Nomenclatura. Estructura e Isomería; representación tridimensional y conformaciones. Estructuras y propiedades físicas. Propiedades químicas correlación estructural. Ruptura de enlace homo y heterolítica. Reacciones de Halogenación y oxidación (combustión).
- 2.2 Alquenos y cicloalquenos. Nomenclatura e Isomería. Correlación entre estructuras y propiedades físicas y químicas. Reacciones de adición electrofílica y estabilidad de carbocationes. Reacciones de oxidación y de reducción.
- 2.3 Alquinos. Nomenclatura. Estructura y propiedades físicas y químicas. Acidez, reactividad de alquinos

3. Hidrocarburos Aromáticos

- 3.1 Estructura y Nomenclatura. Propiedades físicas y químicas. Resonancia y Aromaticidad.
- 3.2 Reactividad y efectos de los sustituyentes. Sustitución aromática electrofílica; halogenación, nitración, alquilaciones y acilaciones.

4. Reacciones de sustitución y eliminación de los haluros de alquilo

- 4.1 Nomenclatura: Estructura y propiedades físicas y químicas.
- Mecanismos de las reacciones de sustitución SN1 y SN2.
- Factores que afectan los tipos de sustitución. Competencia entre el tipo de sustitución.
- 4.2 Mecanismos de las reacciones de eliminación E1 y E2.
- Factores y competencias que influyen entre las reacciones E1 y E2.
- 4.3 Competencias entre los mecanismos de sustitución y eliminación.

5. Aldehídos y Cetonas

Nomenclatura. Estructura y propiedades físicas y químicas. Acidez, enolación y formación de carbaniones. Reacciones de condensación de tipo aldólico. Adición de nucleófilos al carbono carbonílico. Reacciones de oxidación y de reducción.

6. Ácidos carboxílicos y derivados

6.1 Ácidos Carboxílicos y sus derivados.(Haluros de acilo, esteres, amidas y anhídridos). Clasificación y Nomenclatura. Propiedades físicas y químicas. Acidez. Formación de derivados. Reacciones de hidrólisis, alcohólisis y amonólisis de derivados de ácidos. Reducción. Penicilinas y Cefalosporinas.

7. Aminas

Clasificación y Nomenclatura. Estereoquímica e inversión de la configuración. Propiedades físicas y químicas. Basicidad. Reacciones de alquilación y de acilación. Aminas de interés biológico. (sulfas y colorantes).

8. Hidratos de Carbono

Nomenclatura y clasificación. Estereoquímica y actividad óptica. Fórmula de proyecciones de Fischer y Haworth. Anomería y Mutarrotación. Enlace glicosídico y polisacáridos. Reacciones

químicas: a) oxidación b) hidrólisis c) glicosidación. Azúcares reductores. Sacáridos de interés biológico.

9. Lípidos

Lípidos simples: grasas y aceites. Terpenos, esteroides, ceras y prostaglandinas. Lípidos complejos: fosfolípidos y esfingolípidos.

10. Aminoácidos y Proteínas

- 10.1 Aminoácidos. Clasificación y nomenclatura. Estructuras, esteroisomería y asimetría. Propiedades físicas y químicas. Comportamiento acido-base. Puntos isoélectricos e isoiónico. Reactividad química.
- 10.2 Péptidos. Estructuras y enlace peptídico.
- 10.3 Proteínas. Clasificación. Estructuras y conformación de cadenas. Propiedades físico-químicas. Desnaturalización e Hidrólisis. Estructuras de interés biológico.

11. Ácidos Nucleicos

Estructura de las unidades de bases (purínicas y pirimidinicas). Estructuras de nucleósidos y nucleótidos. Polinucleótidos: ADN y ARN; propiedades físico-químicas.

7. METODOLOGÍA

- Clases expositivas.
- Sesiones prácticas de laboratorio y ayudantía.

8. EVALUACIÓN Y PONDERACIONES

8.1. Estructura de pruebas y ponderaciones

Cátedra	Ponderación
Evaluación parcial 1 (PP1)	33,3%
Evaluación parcial 2 (PP2)	33,3%
Evaluación parcial 3 (PP3)	33,4%

Ayudantía	Ponderación
Controles (C)*	10 %

^{*}El porcentaje de los controles solo será considerado para el cálculo de la nota final (NF), una vez aprobado el curso.

Laboratorio	Ponderación
Controles (CLab) (5 controles)	70 %
Informes (ILab) (5 informes)	30%

8.2. Fórmula para el cálculo de la nota de presentación (NP) a examen.

8.2.1 Cátedra

Nota presentación cátedra (NPC) = (PP1+PP2+PP3)/3

Podrán conservar la nota de presentación de cátedra (NPC) a examen todos los estudiantes que presenten un promedio de las evaluaciones PP1, PP2 y PP3 igual o superior a cuatro coma cero (4,0).

La nota de presentación de cátedra (NPC) a examen, estará constituida SOLO por el promedio de las evaluaciones parciales (PP1, PP2 y PP3), la cual será equivalente al 70% de la nota final, mientras que la nota del examen será equivalente al 30%.

Examen Final Cátedra (EC): 30 %

Los estudiantes que posean una nota entre 3,5 y 3.9 deben presentarse a rendir examen. La nota mínima de presentación al examen final será 3,5.

Fórmula para el cálculo de la nota final de Cátedra (NFC):

NFC = NPC
$$\times$$
 0,7 + EC \times 0,3

8.2.2 Laboratorio

Nota presentación laboratorio (NPL) = CLab * 0,7 + ILab x 0,3

Podrán conservar la nota de presentación de laboratorio (NPL) a examen de laboratorio, aquellos estudiantes que presenten una NPL igual o superior a 4,0. Quienes ponderen una nota de presentación inferior a 4,0, esta será equivalente al 70% de la nota final, mientras que la nota del examen será equivalente al 30% restante.

Examen Final Laboratorio (EFL): 30%

- Los estudiantes que posean una nota entre 3,5 y 3,9 deben presentarse a rendir examen.
- La nota mínima de presentación al examen final será 3,5.

Fórmula para el cálculo de la nota final de Laboratorio (NFLAB):

$$NFLAB = NPL \times 0.7 + EFL \times 0.3$$

8.3 Nota final del curso (una vez aprobado el curso)

Nota Final (NF) = NFC
$$\times$$
 0,60 + NFLAB \times 0,3 + C \times 0,10

9. REQUISITOS DE APROBACIÓN

Nota Final	mayor o igual a 4,0
Actividades prácticas	100 % de asistencia

9.1 Formulas de recuperación

A continuación, se detalla los mecanismos para recuperar los controles y pruebas, debidamente ya justificadas, indicadas en el ítem 9.2. En el caso de que el/la estudiante no justifique una o más evaluaciones, estas serán calificadas con la nota mínima de uno coma cero (1,0).

- Ayudantías y Laboratorios: La inasistencia a un control justificado se reagendará en la siguiente sesión.
- Evaluación parciales (PP1-PP3):
- Inasistencia a 1 prueba: La inasistencia a una prueba parcial, se coordinará con el/los profesor (es) de cátedra. (fecha y hora a confirmar).
- La inasistencia a más de una prueba parcial de cátedra es motivo de reprobación del curso. Excepcionalmente y por motivos debidamente justificados se podría autorizar la recuperación de más pruebas

9.2 Situaciones a justificar

Por motivos de salud: Se debe ingresar a través de UCampus, al módulo de solicitudes y seleccionar la opción de justificación de inasistencias. Debe adjuntar el certificado médico y comprobante de pago correspondiente.

Por motivos personales/sociales: Solicitar justificación a la Trabajadora Social del Programa (asobachi@uchile.cl) quien evaluará la situación y solicitará respaldos.

El/la estudiante tendrá un plazo de 48 horas una vez reincorporado a las actividades académicas para enviar la documentación correspondiente.

10. Calendario de evaluaciones

Las fechas de las evaluaciones parciales se fijarán una vez que inicie el curso.

11. VARIOS

Las **situaciones no cubiertas** por este programa se resolverán por las disposiciones del reglamento de Bachillerato.

12. BIBLIOGRAFÍA

Obligatoria:

- 1. Química Orgánica. L.G. Wade. 9º Edición. Pearson (2017).
- 2. Química Orgánica. Paula Yurkanis Bruice. 5ª Edición. Pearson -Prentice Hall (2008)
- 3. Química Orgánica. David Klein. 5ª Edición. (2013)

Complementaria:

- 1. Organic Chemistry. Solomons G. 6th Edición. John Wiley & Sons (1996).
- 2. Química Orgánica. Hart-Craine.Hart. 9ª Edición. Mc.Graw-Hill (1995).