RELACIONES SUELO-AGUA-PLANTA "Modalidad tipo A: Virtual"

IDENTIFICACIÓN DE LA ASIGNATURA

CÓDIGO	SEM	нт	нѕ	HP	НА	CR	REQUISITO	ÁREA DE FORMACIÓN Y TIPO DE ASIGNATURA	UNIDAD RESPONSABLE
AG010295	Primavera	2	0	2	5	9	Admisión	Especializada-electiva	ESCUELA DE POSTGRADO

DESCRIPCIÓN DE LA ASIGNATURA

El estudiante adquirirá las competencias necesarias que le permitan interpretar la dinámica del agua en el suelo, planta y atmósfera, dando especial énfasis a aquellas que se relacionan con los procesos productivos del sector agropecuario. Se inicia el módulo con el análisis cuantitativo de factores que intervienen en la productividad agropecuaria dando énfasis al agua como factor productivo. A continuación se integran estos procesos desde el nivel de órganos hasta poblaciones donde se analizan propiedades a mayor escala y se discuten aspectos aplicados como la determinación de las necesidades de agua de los cultivos.

ESTRATEGIAS METODOLÓGICAS

El curso se impartirá durante todo el semestre en modalidad remota (TIPO A). Clases expositivas "online" vía Plataforma Zoom, se basará en clases expositivas, uso de modelos, ejercicios, lecturas e interacción a través de la plataforma U-Cursos.

COMPETENCIAS DE LA ASIGNATURA (Tipo: B=Básica, G=Genérica, E=Específica)

- Es capaz de interpretar y describir procesos agropecuarios (G).
- Cuantifica el agua desde un punto de vista estático y dinámico en los diferentes componentes del sistema
 (B).
- Interpreta la dinámica suelo-agua-planta-atmósfera con un análisis sistémico, poniendo énfasis en la cuantificación de las necesidades de agua de los cultivos y el efecto de déficits hídricos sobre los rendimientos (E).

RECURSOS DOCENTES

Profesores y tutores.

Acceso a Internet y a Plataformas computacionales de apoyo a la docencia.

Acceso a bibliotecas.

Medios audiovisuales (PC, Data, proyectores).

CONTENIDOS

- > Estado hídrico y transporte del agua en el continuo suelo-planta-atmósfera
- El sistema suelo-planta- atmósfera.
- Transporte, ecuaciones básicas.
- La atmósfera como sumidero del agua desde los sistemas de plantas
- Evapotranspiración
- Enfoques micrometeorológicos: aerodinámico, balance de energía, combinación.
 - Predicción empírica usando parámetros climáticos generales.
 - Medición con lisímetros, método de transferencia de eddies y relación de Bowen
- Balance del agua en las plantas: suministro vs pérdida y uso.
- El suelo como fuente de agua para las plantas
- El agua en el suelo, energía, conductividad, movimiento hacia las raíces.
- Crecimiento de las raíces en relación a la absorción de agua.
- Modelos de absorción de agua por las plantas.

- > El movimiento del agua a través de la planta
 - Medición del estado hídrico en las plantas.
 - Transpiración, resistencias, control estomático, relación con fotosíntesis.
 - Tejido conductor y conductividad hidráulica en la planta
 - Eficiencia versus seguridad hidráulica
 - Déficit de agua y su efecto sobre la producción agrícola
- Respuestas inmediatas, turgor, crecimiento celular, asimilación de CO2 y su dependencia del área foliar y de la apertura de los estomas.
- Rendimiento limitado por agua.
- Resistencia a la sequía. Caracteres asociados a la evasión y tolerancia.
- Eficiencia del uso del agua a nivel de planta. Uso de isotopos estables.

BIBLIOGRAFIA

- Acevedo, E. 1979. Interacciones suelo-agua-raiz en el proceso de absorción de agua por las plantas. Boletín Técnico 44:17-25. Fac. Agron. Universidad de Chile.
- Acevedo, E. 1993. Potential of carbon isotope discrimination as a selection criterion in barley breeding. 399-417pp.In: J.Ehleringer, A.E.Hall and G.D.Farquhar (eds.).Stable Isotopes and Plant Carbon-Water Relations. Academic Press. New York, 555 p.
- Allen, R-. Pereira. L., Raes, D., Smith, M. 2006. Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua por los cultivos. FAO N°56, 322 p.
- Barbour, M. 2009. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology. 34: 83–94.
- Blum, A. 2005 Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56, 1159–1168
- Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112: 119–123
- Blum, A. 2011. Plant breeding for water-limited environments. Berlin: Springer.
- Doorenbos, J. and Kassam, A. 1979. Efectos del agua sobre el rendimiento de los cultivos. FAO, Riego y Drenaje N°33, 212 p.
- Doorenbos, J. and Pruitt, W. 1976. Las necesidades de agua de los cultivos. FAO, Riego y Drenaje N°24, 194 p.
- Hsiao, T.C; Acevedo, E.1974.Plant Responses to Water Deficit, Water Use Efficiency and Drought Resistance. Agricultural Meteorology 14:59-84.
- Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara,B. Raes,D. and Fereres,E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 101:448–459
- Nobel, P. 2009. Physicochemical and Environmental Plant Physiology. Fourth Edition. Academic Press, Inc. California, USA, 604 p.
- Raes, D., Steduto, P., Hsiao T. C. and Fereres, E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description Agron. J. 101:438–447 (2009).
- Silva, P., Silva, H., Garrido, M. y Acevedo, E. 2015. Manual de Estudios y Ejercicios Relacionados con el Contenido de Agua en el Suelo y su Uso por los Cultivos. Santiago, Chile: Facultad de Ciencias Agronómicas, Universidad de Chile. 85 p.
- Steduto, P., Hsiao, T.C., Fereres, E. 2007. On the conservative behavior of biomass water productivity. Irrig Sci.25: 189-207.
- Steduto, P., Hsiao, T.C., Fereres, E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 101:426–437.
- Villalobos, F., Mateos, L., Orgaz, F. y Fereres, E. 2002. Fitotecnia. Bases y tecnologías de la producción agrícola. Ediciones Mundi Prensa, España. 496p.

PROFESORES PARTICIPANTES (Lista no excluyente)

Profesor(a)	Departamento	Especialidad o área
Paola Silva (coordinadora)	Producción Agrícola	Relaciones hídricas, agronomía y fenotipeo
Marco Garrido	Producción Agrícola	Modelamiento de sistemas
Mauricio Ortiz	Centro Estudios Avanzados en Fruticultura	Relaciones hídricas, agronomía y fenotipeo
José Neira	Universidad Católica del Maule	Modelamiento ambiental
Andrea Sánchez	Laboratorio Relación Suelo Agua Planta	Isotopos estables
José Ayamante	Laboratorio Relación Suelo Agua Planta	Relaciones hídricas

EVALUACIÓN DEL APRENDIZAJE

Actividades	F	Ponderación
1° Prueba		25 %
2° Prueba		25 %
3° Prueba		25 %
Presentación de papers		25 %

HORARIO: Lunes 09:00-12:15

CALENDARIZACIÓN ASIGNATURA Relación Suelo Agua Planta

Semestre Primavera 2021

Horarios:

Teoría: Lunes 9:00 a 10:30 Práctica: Lunes 10:45 a 12:15

Equipo Docente: ...Paola Silva C..... (encargado)

...Marco Garrido S.....(colaborador)

SEMANA	FECHA	Tipo actividad	ТЕМА	PROFESOR
1	2 agosto		Programa	Paola Silva
		Т	Situación del agua en Chile	Paola Silva
2	9 agosto	Т	Propiedades del agua. Teoría cohesión- tensión. Potenciales hídricos	Paola Silva
		Р	Medición de potencial hídrico	José Ayamante
3	16 agosto	Т	Concepto y estimaciones del ETc. ETo	Mauricio Ortiz
		Т	Кс	Mauricio Ortiz
4	23 agosto	Т	Medición del ETc Balance de radiación y Razón de Bowen	José Neira
		T/P	Medición del ETc Balance de radiación y Eddy covariance	José Neira
5	30 agosto	Т	Estaciones de medición. Estimaciones territoriales de ETc	José Neira

			Presentación de papers	Paola Silva
6	6 septiembre		1° Prueba sincrónica de desarrollo (25%)	Paola Silva
		Т	Transpiración. Ley de Fick y comportamiento estomático	Paola Silva
	13 septiembre		RECESO TODA UNIVERSIDAD DE CHILE	
7	20 septiembre		Presentación de papers	Paola Silva
		Р	Cálculos de flujo de vapor de agua y de resistencias	José Ayamante
8	27 septiembre	Т	Conductividad hidráulica en la planta	Marco Garrido
		Т	Estrategia isohidrica y anhisohidrica	Marco Garrido
9	04 octubre	Т	Rizosfera y absorción de agua	Marco Garrido
			Rizosfera y absorción de agua. Presentación de papers	Marco Garrido
10	11 octubre		LUNES 11 DE OCTUBRE FERIADO	
11	18 octubre	Т	Movimiento de agua en el suelo	Paola Silva
		Р	Ejercicios de movimiento de agua en el suelo	Paola Silva
12	25 octubre		2° Prueba sincrónica de desarrollo (25%)	Paola Silva
		Т	Rendimiento limitado por agua y eficiencia de transpiración	Paola Silva
	01 noviembre		RECESO ACADÉMICO	
13	08 noviembre	Т	Isótopos Estables	Andrea Sánchez
		T/P	Determinación e interpretación de isótopos estables	Andrea Sánchez
14	15 noviembre		Presentación de papers	Paola Silva
		Т	Uso de agua	Paola Silva
15	22 noviembre		3° Prueba sincrónica de desarrollo (25%)	Paola Silva
16	29 noviembre		Evaluaciones recuperativas	Paola Silva

FECHAS IMPORTANTES Semestre Primavera 2021

- Inicio de Clases: 2 agosto 2021

- Recesos: 13 septiembre; 01 noviembre

- Envío de actas: 3 de diciembre

EVALUACIÓN DEL APRENDIZAJE

Instrumentos	Ponderación			
43 December de Cétados	250/			
1ª Prueba de Cátedra	25%			
2ª Prueba de Cátedra	25%			
3° Prueba de Cátedra	25%			
Presentación de Paper	25%			
Nota de Presentación (NPE)*	100%			
Examen Aprobatorio** (si la nota obtenida es ≥ 4,0 el estudiante será aprobado con Nota Final = 4,0)				

hayan rendido todas sus evaluaciones y su Nota Final (NF) será = NPE.

*Dada la condición de Pandemia y Docencia on-line, excepcionalmente en el semestre Primavera 2021 los alumnos que logren una NPE ≥ 4.0 se eximirán de la obligación de rendir Examen siempre y cuando

^{**}Atendiendo a los acuerdos alcanzados con los/las estudiantes, aquellos(as) que tengan una Nota de Presentación inferior a 4,0 o que no haya rendido alguna evaluación, podrán optar a un único examen final con carácter aprobatorio. Este examen, que se constituye ahora como única opción de examen, debe asegurar la evaluación de todos los contenidos del curso y su comprensión integral