GENÉTICA AVANZADA

Nombre del curso ▲

Código Interno A

2019

Año ▲

Segundo Semestre

Semestre en que se imparte ▲

Escuela de Postgrado, Facultad de Ciencias Agronómicas, Universidad de Chile Lugar donde se realizarán las actividades 🔺

Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias

Unidad responsable de la Eiecución de la asignatura ▲
Herman Silva Ascencio

hesilva@uchile.cl

229785726

Nombre del Coordinador ▲
Correo electrónico ▲
Fono ▲

romore del coordinador =	correo electromes =		10110 2		
Regular (Curso troncal de área de especialización)					
Tipo de curso (Regular, Avanzado, Electivo, Seminarios bibliográficos, Formación General)▲			▲ Máximo	Mínimo	
			C	upos (Nº)	
		Lun	es ► 09:0	00 - 13:00	
05/08/2019	02/12/2019		Sala 1	Sala 1 Escuela de	
00/00/2015	02/12/2019		Po	stgrado	
Fecha de Inicio ▲	Fecha de término ▲	Día(s)	Día(s) ▲ Ho		
Curso de Bioquímica o Biología Molecular		102	148	10	
o Biología Celular a un nivel medio					
(sugerido)					
Pre-requisitos ▲		Directas ▲	indirectas ▲	Créditos* ▲	
		Número de ho	ras (Totales) ▲		

^{*}Sume horas (directas+Indirectas)/25. Coloque sólo valores enteros (Ej: 2,9=3; 2,4=2)

Descripción y objetivos del curso

Para alcanzar un nivel de dominio del área de Mejoramiento Genético en un estudiante de doctorado es indispensable que se dominen los conceptos asociados a la Genética. Este curso de Genética Avanzada está dividido en cuatro áreas fundamentales: 1) Genética de poblaciones y cuantitativa, 2) Genética molecular, 3) Genómica funcional, y 4) Mejoramiento genético.

Se discutirán algunos *papers* seleccionados que han significado un aporte importante en cada una de las áreas mencionadas. Se analizará críticamente la información en genética molecular y en genómica que ha permitido proponer modelos para entender la genética a nivel de plantas y animales, así como también como el análisis de genomas y transcriptomas para la búsqueda y caracterización de genes con potencial de ser utilizados como marcadores en esquemas de mejoramiento genético de especies de importancia económica.

Los tópicos que se desarrollarán en este curso incluyen: regulación génica, análisis de genomas, marcadores moleculares, nuevas tecnologías y uso de la bioinformática como herramienta para alcanzar el desarrollo de nuevas variedades vegetales y razas de animales mejorados.

Metodología (Clases, seminarios, prácticos, otros)

Los estudiantes serán evaluados en términos de su participación en las discusiones, presentaciones de *papers* así como también en sus habilidades para analizar críticamente los datos y modelos presentados en los estudios que se presentarán. La participación en todas las clases es requisito del curso.

Competencias de la asignatura

- Entender el dogma de la biología en su implicancia para el análisis genético.
- Conocer y entender la interface biología molecular y genética cuantitativa.
- Conocer los métodos de secuenciación masiva: RNA seq y genomas.
- Conocer la utilización de marcadores moleculares en programas de mejoramiento genético de especies

vegetales y animales.

- Conocer el potencial de aplicación de metodologías usadas en genómica funcional.
- Conocer los principios del uso de la bioinformática como herramienta en el estudio de plantas y animales de interés económico.
- Conocer el uso de la estadística como herramienta para la predicción de valores genéticos.
- Conocer los mecanismos involucrados en regulación génica.
- Conocer los métodos generales de mejoramiento genético utilizados en especies vegetales y animales.

Evaluación			
ACTIVIDAD	%	Observaciones	
Primera Prueba	35		
Segunda Prueba	35		
Seminario/Participación	30		
TOTAL	100		

Profesores participantes					
Nombres y Grados Académicos	Categoría Académica	Institución	Participación*		
Cristian Araneda	Profesor Asociado	FCA, Universidad de Chile	Colaborador		
Verónica Cambiazo	Profesora Asociada	INTA, Universidad de Chile	Colaborador		
Mauricio Gonzalez	Profesor Titular	INTA, Universidad de Chile	Colaborador		
Christian Hôdar	Profesor Asistente	INTA, Universidad de Chile	Colaborador		
Rodrigo Infante	Profesor Titular	FCA, Universidad de Chile	Colaborador		
Víctor Martínez-Moncada	Profesor Asociado	FCVP, Universidad de Chile	Colaborador		
Lee Meisel	Profesora Asociada	INTA, Universidad de Chile	Colaborador		
Igor Pacheco	Profesor Asistente	INTA, Universidad de Chile	Colaborador		
Roberto Neira	Profesor Titular	FCA, Universidad de Chile	Colaborador		
Herman Silva	Profesor Titular	FAC, Universidad de Chile	Profesor Responsable		

Contenidos

			Número de horas	
Fecha	Contenidos	Profesor	Directas	Indirectas
05/08/2019	Introducción a curso	Herman Silva		
	Replicación/Transcripción/Traducción (dogma de la	Mauricio Gonzalez	4	8
	Biología; variabilidad genética)			
12/08/2019	Regulación Génica en eucariontes I: Bases de la	Verónica Cambiazo	4	8
	transcripción en eucariontes.			
19/08/2019	Regulación Génica en eucariontes II	Verónica Cambiazo	4	8
26/08/2019	Módulos de regulación transcripcional en	Christian Hôdar	4	8
	eucariontes (enhancer): variaciones y consecuencias			

^{*}Profesor Responsable: Formalmente encargado del curso y tiene la atribución de firmar el acta de evaluación de los estudiantes.

Colaborador: Integrante del equipo docente del curso, que realiza actividades de apoyo, fundamentales o complementarias para la realización del curso, y cuya participación tiene una duración mayor a dos semanas. Ejemplos de este nivel de participación son: profesor a cargo de trabajos prácticos, profesor que dicta las clases teóricas de un (o más de un) capítulo o módulo del programa, profesor encargado de alguna actividad específica complementaria.

Invitado: corresponde a un profesor que dicta entre una y cuatro clases de un curso, o que participa en una actividad específica complementaria.

Ayudante: corresponde a una participación de apoyo al profesor responsable en sesiones de ayudantía, evaluaciones, preparación de material de apoyo y/o apoyo en laboratorios, trabajos prácticos y talleres.

		Total	102	148
09/12/2019	PRUEBA 2		4	8
02/12/2019	Seminario 2	Estudiantes y todos los Profesores	19	10
	ganaderas y acuícolas			
18/11/2019 25/11/2019	Plantas y su interacción molecular/genética con el microbioma del suelo Métodos de mejoramiento genético de especies	Mauricio Gonzalez Roberto Neira	4	8
11/11/2019	Genómica Funcional en plantas (genotipo a fenotipo; herramientas moleculares)	Herman Silva	4	8
04/11/2019	Uso de secuencias y SNPs en selección genómica	Víctor Martínez-Moncada	4	8
28/10/2019	Marcadores moleculares, herramientas moleculares y nuevas tecnologías para su uso en Programas de Mejoramiento Genético Asistido	Lee Meisel	4	8
21/10/2019	Seminario 1	Estudiantes y todos los Profesores	19	10
14/10/2019	Genética Vegetal II (Polinización; Ploidia; Cruzamientos)	Igor Pacheco	4	8
07/10/2019	Genética Vegetal I (Mendel y bases de la genética)	Igor Pacheco	4	8
30/09/2019	PRUEBA 1		4	8
	de mejoramiento para especies de propagación sexual y asexual			
23/09/2019	Epístasis; Ligamiento) Conservación del germoplasma vegetal y Métodos	Rodrigo Infante	4	8
09/09/2019	Genética de poblaciones y Genética cuantitativa II (Variación y distribución de frecuencia alélica;	Cristian Araneda	4	8
	(Síntesis evolutiva moderna; selección natural; deriva genética; flujo genético; mutación y recombinación genética.)			
02/09/2019	en el fenotipo. Genética de poblaciones y Genética cuantitativa I	Cristian Araneda	4	8

Evaluaciones:

Prueba 1: 35% Prueba 2: 35% Seminarios: 30%

Seminarios:

Para los seminarios los estudiantes deberán elegir una temática del curso y harán una presentación de un caso en particular. Este debe ser de años recientes y además una publicación en una revista de alto impacto en el área (ej. Science; Nature; Cell; Plant Cell; Plant Journal; Development; PNAS; etc.) . Rúbrica de evaluación:

- a) Conceptualización del paper a presentar y la importancia del mismo
- b) Presentación de materiales & métodos y resultados
- c) Presentación de discusión

Bibliografía

La bibliografía debe ser citada de acuerdo a las normas establecidas en "Harvard Referencing Generator" ubicado en el sitio on-line: http://www.ukessays.com/toolbox/harvard-referencing-generator/. Numere las citas y colóquelas en orden alfabético.

Libro de consulta obligatoria para el curso:

An Introduction to Genetic Analysis, 7th edition. Anthony JF Griffiths, Jeffrey H
Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart. New York:
W. H. Freeman; 2000. ISBN-10: 0-7167-3520-2.

Papers y reviews de interés:

- Vladimir Shulaev, et al. 2011. The genome of woodland strawberry (*Fragariavesca*). *Nature Genetics*. 43:109.
- Ignazio Verde et al. 2013. The high quality draft genome of peach (Prunuspersica) identifies unique patterns of genetic diversity, domestication and genome evolution. *Nature Genetics*. 45 (5) 487-496. doi: 10.1038/ng.2586.
- Araneda Cristian, Roberto Neira, Natalia Lam, &Patricia Iturra. Chapter 1: Salmonids. In: Kocher, T. and C. Kole (Editors). *Genome Mapping and Genomics in Animals*. Volume 2: Genome Mapping and Genomics in Fishes and Aquatic Animals. ISBN-10: 3540738363 Berlin, Springer Verlag, Pages 1-43, 2008.
- Neira Roberto. 2010. Breeding in Aquaculture Species: Genetic Improvement Programs in Developing Countries. *Proceedings of the 9th World Congress on Genetics Applied to Livestock Production*. Leipzig, Germany, August 1-6, 2010, p8. http://www.kongressband.de/wcgalp2010/assets/pdf/0062.pdf
- Neira Roberto, Nelson Díaz, Graham Gall, José Gallardo, Jean Paul Lhorente, and Rodrigo Manterola. 2006. Genetic improvement in Coho salmon (*Oncorhynchuskisutch*). I: Selection response and inbreeding depression on harvest weight. *Aquaculture* 257 (2006): 9-17.
- Holsinger KE, Weir BS: Genetics in geographically structured populations: defining, estimating and interpreting FST. *Nat Rev Genet* 2009, 10(9):639-650.
- Charlesworth B: Effective population size and patterns of molecular evolution and variation. *Nat Rev Genet* 2009, 10(3):195-205.
- Visscher PM, Hill WG, Wray NR: Heritability in the genomics era concepts and misconceptions. *Nat Rev Genet* 2008, 9(4):255-266.
- Martinez V., G. Thorgaard, B. Robison, M. Sillanp. 2005. An application of Bayesian QTL mapping to early development in double haploid lines of rainbow trout including environmental effects. *Genetical Research*, 3: 209-221.
- Infante, R.; Martinez-Gomez, P.; Predieri, S. 2008. Quality oriented fruit breeding: Peach [Prunus persica (L.) Batsch]. *JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT* 6: 342-356.