BIOFISICA AMBIENTAL

Identificación de la Asignatura

CODIGO	SEM	нт	HP	НА	SCT	REQUISITO	ÁREA DE FORMACIÓN Y TIPO DE ASIGNATURA	UNIDAD RESPONSABLE	
AG010475	Otoño	4	0	5.3	6		Electiva General	Departamento de Producción Agrícola	

Horas teóricas y prácticas expresadas en horas pedagógicas de 45 minutos, horas alumno expresadas en horas cronológicas.

DESCRIPCIÓN DE LA ASIGNATURA:

El curso de Biofísica Ambiental aporta herramientas para la comprensión del microambiente físico en el cual residen las plantas, a través de modelos de transferencia de materia y energía que se aplican a los procesos de intercambio entre las plantas y sus alrededores.

Objetivos

- Describir y modelar el microambiente físico en que se encuentran las plantas.
- Uso de modelos simples para describir los intercambios de materia y energía entre las plantas y su medioambiente, además de la respuesta de las plantas a los flujos de materia y energía.

ESTRATEGIAS METODOLÓGICAS:

Clases expositivas, presentación de artículos científicos, ejercicios prácticos

COMPETENCIAS DE LA ASIGNATURA:

Al término de este curso el estudiante:

- 1.-Podrá leer las ecuaciones básicas que representan los modelos de intercambio de materia y energía entre las plantas y el medioambiente.
- 2.-Conocerá los modelos de infiltración y redistribución del agua en el suelo.
- 3.-Conocerá las bases que regulan el intercambio gaseoso entre las plantas y el medioambiente.
- 4.-Podrá estimar flujos de calor, aire y agua en el sistema suelo-agua-planta- atmósfera.
- 5.-Podrá realizar balances de masa y energía para diferentes cultivos y a través de estos balances estimar fotosíntesis, evapotranspiración e intercambio térmico.
- 6.- Conocerá las bases del movimiento de iones en el suelo, la absorción por las plantas y su cuantificación.

Evaluación:

Prueba de cátedra	50 %
Controles	20 %
Presentaciones de Seminarios	30 %

CONTENIDOS:

		Profesor	Número de horas		
Fecha	Contenidos		Directas	Indirectas	
	Nivelación Relaciones Hídricas		8	8	
	Introducción: Intercambio de energía Transporte de masa y de momentum Conservación de masa y energía Continuidad Unidades		2	2	
	Temperatura Variación vertical de la temperatura del aire. Temperatura del suelo en función de la profundidad y del tiempo. Temperatura y desarrollo biológico. Tiempo térmico Cálculo del tiempo térmico a partir de información meteorológica		4	4	
	Vapor de Agua y sus Gases Concentración de un gas. Vapor de agua: Condiciones de saturación Saturación parcial. Estimación de la concentración de vapor en aire.		4	4	
	El Agua Líquida en los Organismos y su Medio Contenido hídrico y potencial del agua. El potencial hídrico en los organismos y su medio. Relación entre las fases líquida y gaseosa del agua		4	4	
	Viento Características de la turbulencia atmosférica Determinación del desplazamiento del plano cero y del largo de aspereza. Perfil del viento Calculo de transferencia de propiedades de la atmosfera		4	4	
	Transporte de Masa y Calor Flujos molares. Integración de las ecuaciones de transporte Resistencias y conductancias Resistencias y conductancias en serie. Resistencias en paralelo Cálculo de flujos		2	2	

		Total	80	80
l	Práctica sobre los tópicos expuestos		30	30
	<u>.</u>			
	Control de la conductancia estornatica Distribución de la luz en las canopias			
	Evapotranspiración Control de la conductancia estomática			
	Transpiración de Canopia			
	Balance de energía y transpiración			
	Plantas y Comunidades de Plantas			
			6	6
[i	Emisión de radiación			
t	térmica			
	Distribución espectral de la radiación solar y de la			
	Atenuación de la radiación			
	La ley del coseno			
	Definiciones			
	Radiación de un cuerpo negro			
-	Espectro electromagnético			
L	Radiación		•	7
	Transpiración y absorción de agua por las plantas		4	4
	Transpiración y absorción de agua por las plantas			
	Evaporación desde la superficie del suelo			
	Infiltración de agua en el suelo Redistribución de agua en el suelo			
	Ley de Darcy Conductividad hidráulica			
	Movimiento de Agua en el Suelo			
Ι.	Movimiento de Agua en el Suele		6	6
	Difusividad térmica de los suelos			
	Propiedades térmicas de los suelos			
	Conducción y almacenaje de calor en el suelo			
-	Movimiento de Calor en el Suelo			
			3	3
	Materia Organica y Movimiento de gases			
	Difusividad			
	Ley de Fick			
	Movimiento de Gas en el Suelo		3	3

Profesores participantes							
Nombres y Grados Académicos	Categoría Académica	Institución	Participación*				
Edmundo Acevedo H., Ph. D.	Profesor Titular	U. de Chile	Responsable				
Paola Silva C., Dr.	Profesor Asistente	U. de Chile	Colaborador				
Juan Pablo Fuentes E, Ph. D.	Profesor Asociado	U. de Chile	Invitado				
Mauricio Ortiz L, Dr.		CEAF	Invitado				
Eduardo Martínez H, Dr.	Profesor Asistente	U. de Chile	Invitado				

Bibliografía:

- Loomis, R.S. y Connor, D.J. 2002. Ecología de Cultivos. Productividad y Manejo en Sistemas Agrarios. Mundi-Prensa. Madrid. 591 p
- Nobel, P. 2009. Physicochemical and Environmental Plant Physiology. Elsevier 582 p.
- Villalobos, F.J., Mateos, L., Orgaz, F. y Fereres, E. 2002. Fitotecnia: Bases y tecnologías de la producción agrícola. Ediciones Mundi-Prensa. Madrid, España. 496p.

En la elaboración de Seminarios se usarán publicaciones actuales de las diferentes materias del curso.

Artículos Científicos

- Andrade, F., P. Calviño, A. Cirilo and P. Barbieri. 2002. Yield Responses to Narrow Rows Depend on Increased Radiation Interception. Agronomy Journal 94:975-980.
- Anderson, M., W. Kustas and J. Norman. 2003. Upscaling and Downscaling- A Regional View of the Soil-Plant-Atmosphere Continuum. Agronomy Journal 95:1408-1423.
- Campbell, G. 2003. Modeling Sensible and Latent Heat Transport in Crop and Residue Canopies. Agronomy Journal 95:1388-1392.
- FAO 56. ET de Cultivos.
- Green, S., B. Clothier and B. Jardine. 2003. Theory and Practical Application of Heat Pulse to Measure Sap Flow. Agronomy Journal 95:1371-1379.
- Green, S. K. McNaughton, J.N. Wünsche and B. Clothier. 2003. Modeling Light Interception and Transpiration of Apple Tree Canopies. Agronomy Journal 95:1380-1387.
- Ham, J. and J. Heilman. 2003. Experimental Test of Density and Energy-Balance Corrections on Carbon Dioxide Flux as Measured Using Open-Path Eddy Covariate. Agronomy Journal 95:1393-1403.
- Healy, R., R. Striegl, T. Russell, G. Hutchinson and G. Livingston. 1996. Numerical Evaluation of Static-Chamber Measurement of Soil-Atmosphere Gas Exchange: Identification of Physical Processes. Soil Sci. Soc. Am. J. 60:740-747.
- Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B. Raes, D. and Fereres, E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 101:448–459
- Loomis, R. and J. Amthor. 1999. Yield Potential, Plant Assimilatory Capacity, and Metabolic Efficiencies. Crop Science 39:1584-1596.
- Niu, X., R. Bressan P. Hasegawa and J. Pardo. 1995. Ion Homeostasis in NaCl Stress Environments. Plant Physiology 109:735-742.
- Passioura, J. 2002. Environmental Biology and Crop Improvement. Funct. Plant Biol. 29:537-546.
- Patel, N., A. Mehta and A. Shekh. 2001. Canopy Temperature and Water Stress Quantification in Rainfed Pigeonpea (Cajanus Cajan (L.) Millsp.). Agricultural and Forest Meteorology 109:223-232.

- Raes, D., Steduto, P., Hsiao T. C. and Fereres, E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description Agron. J. 101:438–447.
- Ross, P.J. 2003. Modeling Soil Water and Solute Transport-Fast, Simplified Numerical Solutions. Agronomy Journal 95:1352-1361.
- Steduto, P., Hsiao, T.C., Fereres, E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 101:426–437.

Plantas y comunidades de plantas

Balance de energía y transpiración Transpiración de Canopia Evapotranspiración Control de la conductancia estomática Distribución de la luz en las canopias